11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

46 Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems<br />

which are persistent for α 2 = α 1 . The first solution is s = s 0 (α 1 ,α 2 ,0) T for Q x = 0 which<br />

is aligned with the effective SO field B SO (k) = −2γ g k x (α 1 ,α 2 ,0) T . In this case, we have<br />

accord<strong>in</strong>g to Eq.(3.81) H s,RD1 (W) = (1/12)( ˜Q SO W) 2 H s , with ˜Q 2 SO = (2m e(α 2 1 −α2 2 ))2 /α 2<br />

and 1/τ s = 2p 2 F α2 τ, α = √ α 2 1 +α2 2 . As mentioned above by transform<strong>in</strong>g the vector potential<br />

A S , Eq.(3.75), this alignment occurs due to the constra<strong>in</strong>t on the sp<strong>in</strong>-dynamics<br />

imposed by the boundary condition as soon as the wire width W is smaller than the sp<strong>in</strong><br />

precession length L SO . In addition, we f<strong>in</strong>d two sp<strong>in</strong> helix solutions <strong>in</strong> narrow wires,<br />

⎛ ⎞ ⎛ ⎞<br />

− α 2<br />

α ( ) 0 ( )<br />

s = s 0<br />

⎜ α 1 ⎟ 2π<br />

⎝ α ⎠ s<strong>in</strong> x +s 0<br />

⎜<br />

L SO<br />

⎝ 0 ⎟ 2π<br />

⎠ cos x , (3.82)<br />

L SO<br />

0<br />

1<br />

and the l<strong>in</strong>early <strong>in</strong>dependent solution, obta<strong>in</strong>ed by <strong>in</strong>terchang<strong>in</strong>g cos and s<strong>in</strong> <strong>in</strong> Eq.(3.82).<br />

The form <strong>of</strong> this long persist<strong>in</strong>g sp<strong>in</strong> helix depends therefore on the ratio <strong>of</strong> l<strong>in</strong>ear Rashba<br />

and l<strong>in</strong>ear Dresselhaus coupl<strong>in</strong>g strength, Fig.3.6, and its sp<strong>in</strong> relaxation rate is dim<strong>in</strong>ished<br />

as H s,RD2/3 = (1/2)H s,RD1 .<br />

Figure 3.6: Long persist<strong>in</strong>g sp<strong>in</strong> helix solution <strong>of</strong> the sp<strong>in</strong>-diffusion equation <strong>in</strong> a quantum<br />

wire whose width W is smaller than the sp<strong>in</strong> precession length L SO for vary<strong>in</strong>g ratio <strong>of</strong><br />

l<strong>in</strong>ear Rashba α 2 = αs<strong>in</strong>ϕ and l<strong>in</strong>ear Dresselhaus coupl<strong>in</strong>g, α 1 = αcosϕ, Eq.(3.82), for<br />

fixed α and L SO = π/m e α.<br />

3.4.3 Exact Diagonalization<br />

The exact diagonalization <strong>of</strong> the <strong>in</strong>verse Cooperon propagator, as obta<strong>in</strong>ed after<br />

the non-Abelian transformation, Eq.(3.73), is performed <strong>in</strong> the basis <strong>of</strong> transverse stand<strong>in</strong>g<br />

{<br />

waves, satisfy<strong>in</strong>gNeumannboundaryconditions, 1/ √ W, √ 2/ √ }<br />

W cos((nπ/W)(y −W/2))

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!