11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems 43<br />

where 〈...〉 denotes the average over the direction <strong>of</strong> v F and k which we rewrite us<strong>in</strong>g<br />

Eq.(C.28) for the given geometry as<br />

(−i∂ y +2e(A S ) y<br />

)C<br />

(<br />

x,y = ± W )<br />

= 0, ∀x, (3.71)<br />

2<br />

where n is the unit vector normal to the boundary ∂S and x is the coord<strong>in</strong>ate along the<br />

wire. The transverse zero-mode Q y = 0 does not satisfy this condition. Therefore, it<br />

is convenient to perform a non-Abelian gauge transformation,[AF01, MC00] so that the<br />

transformed problem has Neumann boundary conditions, and the transformed Cooperon<br />

Hamiltonian can therefore be diagonalized <strong>in</strong> zero-mode approximation for quantum wires.<br />

S<strong>in</strong>ce <strong>in</strong> quantum wires these boundary conditions apply only <strong>in</strong> the transverse direction,<br />

a transformation act<strong>in</strong>g <strong>in</strong> the transverse direction is needed: Ĉ → ˜Ĉ = U A ĈU † A , with<br />

U A = exp(i2e(A S ) y<br />

y). Then, the boundary condition simplifies to −i∂ y ˜C(x,y = ±W/2) =<br />

0, ∀x, and the Hamiltonian changes to<br />

˜H c = Q 2 −2Q SO Q x [cos(Q SO y)S y −s<strong>in</strong>(Q SO y)S z ]<br />

+Q 2 SO [cos2 (Q SO y)Sy 2 +s<strong>in</strong>2 (Q SO y)Sz<br />

2<br />

−s<strong>in</strong>(Q SO y)cos(Q SO y)(S y S z +S z S y )] (3.72)<br />

= (Q+2eàs ) 2 . (3.73)<br />

where the effective vector potential A S , as <strong>in</strong>troduced <strong>in</strong> Eq.(3.43),<br />

A S = m e<br />

e ˆαS = m e<br />

e<br />

⎛<br />

⎝ 0 −α 2 0<br />

α 2 0 0<br />

⎛ ⎞<br />

⎞ S x<br />

⎠⎜<br />

⎝ S y<br />

S z<br />

⎟<br />

⎠ , (3.74)<br />

is transformed to the effective vector potential às after the transformation U A has been<br />

applied to the Hamiltonian<br />

à s ≡ m e<br />

e ˜ˆα(y)S<br />

⎛<br />

= m e<br />

e<br />

⎝ 0 −α 2cos(Q SO y) −α 2 s<strong>in</strong>(Q SO y)<br />

0 0 0<br />

⎛<br />

⎞<br />

⎠⎜<br />

⎝<br />

⎞<br />

S x<br />

S y<br />

⎟<br />

⎠ , (3.75)<br />

S z<br />

which varies with the transverse coord<strong>in</strong>ate y on the length scale <strong>of</strong> L SO . Now, we can<br />

see already that for narrow wires W < L SO , this vector potential varies l<strong>in</strong>early with y,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!