11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

82 Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover<br />

E m<strong>in</strong> /ǫ 2 F γ2 D<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.<br />

0.5<br />

1.<br />

1.5<br />

2.<br />

2.5<br />

3.<br />

0.2<br />

0.0<br />

5 10 15 20 25 30<br />

N<br />

Figure 4.5: The lowest eigenvalues <strong>of</strong> the conf<strong>in</strong>ed Cooperon Hamiltonian Eq.(4.49), equivalent<br />

to the lowest sp<strong>in</strong> relaxation rate, are shown for Q = 0 for different number <strong>of</strong> modes<br />

N = k F W/π. Different curves correspond to different values <strong>of</strong> α 1 /q s .<br />

4.6 Conclusions<br />

Summariz<strong>in</strong>g the results <strong>of</strong> this chapter, we have characterized the anisotropy and<br />

width dependence <strong>of</strong> sp<strong>in</strong> relaxation <strong>in</strong> a (001) quantum wire. There are special angles<br />

θ which are optimal for sp<strong>in</strong> transport <strong>in</strong> quantum wires <strong>of</strong> f<strong>in</strong>ite width: The [110] and<br />

the [110] direction. At [110] we f<strong>in</strong>d the longest sp<strong>in</strong> dephas<strong>in</strong>g time T 2 . If the absolute<br />

m<strong>in</strong>imum <strong>of</strong> sp<strong>in</strong> relaxation is found at [110] or [110] direction depends on the strength <strong>of</strong><br />

cubicDresselhausandwirewidth. Thef<strong>in</strong>d<strong>in</strong>gsforthesp<strong>in</strong>dephas<strong>in</strong>gtimeare<strong>in</strong>agreement<br />

with numerical results. The analytical expression for T 2 allows to see directly the <strong>in</strong>terplay<br />

between the cubic Dresselhaus SOC and the dimensional reduction, hav<strong>in</strong>g effect on T 2 .<br />

In addition we analyzed the special case <strong>of</strong> a (110) system and found the m<strong>in</strong>imal sp<strong>in</strong><br />

relaxation rates depend<strong>in</strong>g on Rashba and l<strong>in</strong>. and cubic Dresselhaus SOC <strong>in</strong> the presence<br />

<strong>of</strong> boundaries. This results can be used to understand width and direction dependent WL<br />

measurements <strong>in</strong> quantum wires. F<strong>in</strong>ally, we have shown how the reduction <strong>of</strong> channels<br />

<strong>in</strong> the wire reduces the f<strong>in</strong>ite sp<strong>in</strong> relaxation rate which is due to cubic Dresselhaus SOC<br />

and does not reduce if the wire is small, Wq s ≪ 1, and diffusive, W ≫ l e . The change <strong>in</strong><br />

channel number also changes the shift <strong>of</strong> l<strong>in</strong>. Dresselhaus SOC strength, ˜α 1 . This has to<br />

be considered if extract<strong>in</strong>g SOC strength from wires with only few transverse channels.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!