11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

58 Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems<br />

all wave vectors, K = Q/Q SO , is given by<br />

with<br />

E B,2D,1 /D e Q 2 SO<br />

= 1+K 2 x, (3.100)<br />

E B,2D,2 /D e Q 2 SO<br />

= E B,2D,1 + f 1<br />

E B,2D,3/4 /D e Q 2 SO = E B,2D,1 − 1 2<br />

+ 1 6<br />

f 1/3<br />

2<br />

− 1 3 f1/3 2 , (3.101)<br />

(<br />

1±i<br />

√<br />

3<br />

)<br />

f1<br />

f 1/3<br />

2<br />

(<br />

1∓i √ 3<br />

)<br />

f 1/3<br />

2<br />

, (3.102)<br />

f 1 = ˜B 2 −4Kx 2 −1, (3.103)<br />

( √3 √ )<br />

f 2 = 3 108Kx 4 +f3 1 −18K2 x , (3.104)<br />

˜B = gµ B B/D e Q 2 SO, (3.105)<br />

Thus, there are sp<strong>in</strong> states with the same real part <strong>of</strong> the Cooperon energy, so that they<br />

decay equally <strong>in</strong> time, but the imag<strong>in</strong>ary part is different, so that they precess with different<br />

frequencies around the magnetic field axis. A significant change <strong>of</strong> the Cooperon spectrum<br />

appears when gµ B B/D e exceeds Q 2 SO<br />

, as can be seen <strong>in</strong> Fig.3.16(b). All states with a low<br />

decay rate do precess now, due to a f<strong>in</strong>ite imag<strong>in</strong>ary value <strong>of</strong> their eigenvalue. Associated<br />

with this change is also a change <strong>of</strong> the dispersion <strong>of</strong> the real part <strong>of</strong> E B,2D,3 which changes<br />

for K y = 0 from a nearly quadratic dispersion <strong>in</strong> K x , a 0 + a 1 K 2 x for ˜B < 1 to one which<br />

changes more slowly as a 0 +a 1 K 2/3<br />

x +a 2 K 4/3<br />

x +a 3 K 2 x for ˜B ≥ 1 [see Fig.3.16 (a)].<br />

Weak Field<br />

In the case <strong>of</strong> a weak Zeeman field, ˜B ≪ 1, the s<strong>in</strong>glet and triplet sectors are<br />

still approximately separated. A f<strong>in</strong>ite ˜B ≪ 1 lifts however the energy <strong>of</strong> the s<strong>in</strong>glet mode<br />

to E B,2D,2 (K = 0)/D e Q 2 SO<br />

= ˜B 2 /2 + O(˜B 4 ), thus the s<strong>in</strong>glet mode atta<strong>in</strong>s a f<strong>in</strong>ite gap,<br />

correspond<strong>in</strong>g to a f<strong>in</strong>ite relaxation rate. The absolute m<strong>in</strong>imum <strong>of</strong> two <strong>of</strong> the triplet<br />

modes is also lifted by E B,2D,2 (K = ± √ 15/4)/D e Q 2 = 7/16 + (3/4) ˜B 2 SO<br />

+ O(˜B 4 ), while<br />

their value is <strong>in</strong>dependent <strong>of</strong> ˜B at K = 0. In contrast, the m<strong>in</strong>imum <strong>of</strong> the triplet mode<br />

E B,2D,3 , whichapproachesE T+ <strong>in</strong>thelimit<strong>of</strong>nomagneticfield(seeFig.3.4)isdim<strong>in</strong>ishedto<br />

E B,2D,3 (K = 0)/D e Q 2 = 2− ˜B 2 SO<br />

/2+O(˜B 4 ). So, <strong>in</strong> summary, a weak Zeeman field renders<br />

all four Cooperon modes gapfull and that gap can be <strong>in</strong>terpreted as a f<strong>in</strong>ite relaxation rate

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!