11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover 77<br />

4.3.2 With cubic Dresselhaus SOC<br />

If cubic Dresselhaus SOC cannot be neglected, the absolute m<strong>in</strong>imum <strong>of</strong> sp<strong>in</strong><br />

relaxation can also shift to k x m<strong>in</strong><br />

= 0. This depends on the ratio <strong>of</strong> Rashba and l<strong>in</strong>.<br />

Dresselhaus SOC:<br />

If q 2 /q 1 ≪ 1, we f<strong>in</strong>d the absolute m<strong>in</strong>imum at k x m<strong>in</strong><br />

= 0,<br />

E m<strong>in</strong>1 = ˜q 3 + ˜q 2 1 +q2 2<br />

2<br />

−∆ c + 1 12 ∆ c(q 2 W) 2 , (4.44)<br />

with<br />

∆ c = 1 2<br />

√<br />

(˜q 3 + ˜q 2 1 )2 +2(˜q 2 1 − ˜q 3)q 2 2 +q4 2 . (4.45)<br />

If q 2 /q 1 ≫ 1, we f<strong>in</strong>d the absolute m<strong>in</strong>imum at k x m<strong>in</strong><br />

≈ ± ∆ 24 (24−(q 2W) 2 ),<br />

) (˜q<br />

E m<strong>in</strong>2 = kx 2 2<br />

m<strong>in</strong><br />

−k x m<strong>in</strong><br />

q 1 ˜q 3<br />

2 2<br />

q2<br />

2 +2 −<br />

16k x m<strong>in</strong><br />

q 2<br />

+∆ 2 + ˜q )<br />

3<br />

(˜q<br />

2<br />

1<br />

+1<br />

2 q2<br />

2 (˜q3˜q 1<br />

2 −<br />

12 − ˜q 3 2q 2<br />

+ q4 2<br />

24 − (˜q<br />

2<br />

1<br />

24 + q2 2<br />

12<br />

3072kx 3 − q2 2<br />

m<strong>in</strong><br />

24 (˜q 3 − ˜q 1)<br />

2<br />

)<br />

q 2 k x m<strong>in</strong><br />

− q ((<br />

2 ˜q<br />

2<br />

3<br />

k x m<strong>in</strong><br />

128 + ˜q 3˜q 1<br />

2<br />

192<br />

)<br />

− ˜q 3q2<br />

2 ))<br />

W 2 . (4.46)<br />

96<br />

We can conclude that reduc<strong>in</strong>g wire width W will not cancel the contribution due to cubic<br />

Dresselhaus SOC to the sp<strong>in</strong> relaxation rate.<br />

4.4 Weak Localization<br />

In Ref.[Ket07] and the previous chapter the crossover from WL to WAL due<br />

to change <strong>of</strong> wire width and SOC strength was expla<strong>in</strong>ed <strong>in</strong> the case <strong>of</strong> a (001) system.<br />

Whether WL or WAL is present depends on the suppression <strong>of</strong> the triplet modes <strong>of</strong> the<br />

Cooperon. The suppression <strong>in</strong> turn is dom<strong>in</strong>ated by the absolute m<strong>in</strong>imum <strong>of</strong> the spectrum<br />

<strong>of</strong> the Cooperon Hamiltonian H c . The f<strong>in</strong>d<strong>in</strong>gs presented <strong>in</strong> Sec.4.2.2 therefore po<strong>in</strong>t out<br />

that e.g. the crossover width, at which the system changes from WL to WAL, can shift<br />

with the wire direction θ. Recently experimental results on WL/WAL by J. Nitta et al.,<br />

Ref.[Nit06], seem to show a strong dependence on growth direction. Our presented results

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!