11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems 31<br />

where we used the def<strong>in</strong>ition G R/A (p) ≡ G R/A (p,p ′ )δ p,p ′. The average over impurities can<br />

be depicted diagrammatically,<br />

(<br />

〈G〉 imp = + +<br />

) (<br />

+ +<br />

+ +<br />

+ +<br />

)<br />

where the fermion l<strong>in</strong>e<br />

+··· , (3.12)<br />

denotes the unperturbed Green’s function. For uncorrelated<br />

disorder potential, 〈V(x)V(x ′ )〉 = δ(x−x ′ )/2πντ, as we will use <strong>in</strong> the follow<strong>in</strong>g, we perform<br />

the disorder average <strong>in</strong> first-order Born approximation and get<br />

G R E(p) = =<br />

1<br />

E −H 0 (p)+i 1 , (3.13)<br />

2τ<br />

whereG A E (p) is its complex conjugate, respectively. H 0 is the Hamiltonian without disorder<br />

potential V. The impurity vertex (the cross) is given by 1/2πντ. Until now we have<br />

the same <strong>in</strong>formation <strong>in</strong> the scatter<strong>in</strong>g time τ as we would ga<strong>in</strong> from the Drude formula.<br />

Assum<strong>in</strong>g low temperature, we can simplify Eq.(3.9) to<br />

e 2 ∑<br />

σ =<br />

πm 2 e Vol p 2 x ×〈G R (p)〉 imp 〈G A (p)〉 imp (3.14)<br />

p<br />

e 2 ∑<br />

=<br />

πm 2 e Vol p 2 x ×G R (p)G A (p) (3.15)<br />

=<br />

p<br />

e 2 ∑ p 2 x<br />

πm 2 e Vol p (E F −E p ) 2 + ( )<br />

1 2<br />

(3.16)<br />

2τ<br />

which can be simplified <strong>in</strong> the metallic regime, E F ≫ 1/τ, where the dom<strong>in</strong>ant contribution<br />

is given by energies close to E F , to<br />

e 2 ∫ ∞<br />

( ) E2me<br />

≈<br />

πm 2 dE(Volρ(E))<br />

eVol<br />

d<br />

≈ 2 e2<br />

m e<br />

ρ(E F )E F<br />

1<br />

d<br />

0<br />

∫ ∞<br />

∞<br />

dE<br />

1<br />

(E F −E) 2 + ( 1<br />

2τ<br />

1<br />

(E F −E) 2 + ( 1<br />

2τ<br />

) 2<br />

(3.17)<br />

) 2<br />

(3.18)<br />

= e2 nτ<br />

m e<br />

, (3.19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!