11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

36 Chapter 3: WL/WAL Crossover and <strong>Sp<strong>in</strong></strong> Relaxation <strong>in</strong> Conf<strong>in</strong>ed Systems<br />

It follows that for weak disorder and without Zeeman coupl<strong>in</strong>g, the Cooperon depends only<br />

on the total momentum Q and the total sp<strong>in</strong> S. Expand<strong>in</strong>g the Cooperon to second order<br />

<strong>in</strong> (Q+2eA+2m e âS) and perform<strong>in</strong>g the angular <strong>in</strong>tegral which is for 2D diffusion (elastic<br />

mean-free path l e smaller than wire width W) cont<strong>in</strong>uous from 0 to 2π and yields<br />

Ĉ(Q) =<br />

1<br />

D e (Q+2eA+2eA S ) 2 +H γD<br />

. (3.43)<br />

The effective vector potential due to SO <strong>in</strong>teraction, A S = m eˆαS/e (where ˆα = 〈â〉 denotes<br />

the matrix Eq.(3.40), as averaged over angle), couples to total sp<strong>in</strong> vector S whose components<br />

are four by four matrices. The cubic Dresselhaus coupl<strong>in</strong>g is found to reduce the<br />

effect <strong>of</strong> the l<strong>in</strong>ear one to<br />

˜α 1 := α 1 −m e γ D E F /2. (3.44)<br />

Furthermore, it gives rise to the sp<strong>in</strong> relaxation term <strong>in</strong> Eq.(3.43),<br />

H γD = D e (m 2 e E Fγ D ) 2 (Sx 2 +S2 y ). (3.45)<br />

In the representation <strong>of</strong> the s<strong>in</strong>glet, |⇄〉 and triplet states |⇉〉,|⇈〉,|〉 (Tab.3.1), Ĉ destate<br />

(<strong>in</strong>dex: electron-number) m s S<br />

|⇄〉 := 1 √<br />

2<br />

(|↑〉 1<br />

|↓〉 2<br />

−|↑〉 2<br />

|↓〉 1<br />

) 0 0<br />

|⇈〉 := |↑〉 1<br />

|↑〉 2<br />

1 1<br />

|⇉〉 := 1 √<br />

2<br />

(|↑〉 1<br />

|↓〉 2<br />

+|↑〉 2<br />

|↓〉 1<br />

) 0 1<br />

|〉 := |↓〉 1<br />

|↓〉 2<br />

−1 1<br />

Table 3.1: S<strong>in</strong>glet and triplet states<br />

couples <strong>in</strong>to a s<strong>in</strong>glet and a triplet sector. Thus, the quantum conductivity is a sum <strong>of</strong><br />

s<strong>in</strong>glet and triplet terms<br />

⎛<br />

∆σ = −2 e2 D e<br />

2π Vol<br />

∑<br />

1<br />

−<br />

⎜ D<br />

Q ⎝ e (Q+2eA)<br />

} {{ 2 + ∑<br />

}<br />

s<strong>in</strong>glet contribution<br />

〈<br />

∣ 〉<br />

∣ ∣∣S<br />

S = 1,m ∣Ĉ(Q) = 1,m . (3.46)<br />

⎟<br />

m=0,±1<br />

⎠<br />

} {{ }<br />

triplet contribution<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!