11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 2: <strong>Sp<strong>in</strong></strong> <strong>Dynamics</strong>: Overview and Analysis <strong>of</strong> 2D Systems 13<br />

(SIA), also called Rashba-sp<strong>in</strong>-orbit <strong>in</strong>teraction[Ras60] is given by<br />

H R = α 2 (σ x k y −σ y k x ), (2.15)<br />

whereα 2 dependsontheasymmetry<strong>of</strong>theconf<strong>in</strong>ementpotentialV(z)<strong>in</strong>thedirectionz, the<br />

growth direction <strong>of</strong> the quantum well, and can thus be deliberately changed by application<br />

<strong>of</strong> a gate potential. This dependence allows one, <strong>in</strong> pr<strong>in</strong>ciple, to control the electron sp<strong>in</strong><br />

with a gate potential, which can therefore be used as the basis <strong>of</strong> a sp<strong>in</strong> transistor.[DD90]<br />

One should stress that the expectation value <strong>of</strong> the electrical field E c = −∂ z V(z) <strong>in</strong> the<br />

conduction band state vanishes if the effective mass m e is not position dependent. However<br />

it can be shown that the parameter α 2 is modulated by the electric field <strong>in</strong> the valence band<br />

and the z-dependent Pauli splitt<strong>in</strong>g ∆ 0 .[FMAE + 07] Several measured values <strong>of</strong> α 2 are listed<br />

<strong>in</strong> Tab.A and ratios <strong>of</strong> α 2 and α 1 <strong>in</strong> Tab.A.<br />

We can comb<strong>in</strong>e all sp<strong>in</strong>-orbit coupl<strong>in</strong>gs by <strong>in</strong>troduc<strong>in</strong>g the sp<strong>in</strong>-orbit field such that the<br />

Hamiltonian has the form <strong>of</strong> a Zeeman term:<br />

H SO = −sB SO (k), (2.16)<br />

where the sp<strong>in</strong> vector is s = σ/2. But we stress aga<strong>in</strong> that s<strong>in</strong>ce B SO (k) → B SO (−k) =<br />

−B SO (k)underthetimereversaloperation, sp<strong>in</strong>-orbitcoupl<strong>in</strong>gdoesnotbreaktimereversal<br />

symmetry, s<strong>in</strong>ce the time reversal operation also changes the sign <strong>of</strong> the sp<strong>in</strong>, s → −s. Only<br />

an external magnetic field B breaks the time reversal symmetry. Thus, the electron sp<strong>in</strong><br />

operator ŝ is for fixed electron momentum k governed by the Bloch equations with the<br />

sp<strong>in</strong>-orbit field,<br />

∂ŝ<br />

∂t = ŝ×(B+B SO(k))− 1ˆτ s<br />

ŝ. (2.17)<br />

The sp<strong>in</strong> relaxation tensor is no longer necessarily diagonal <strong>in</strong> the presence <strong>of</strong> sp<strong>in</strong>-orbit<br />

<strong>in</strong>teraction as will be shown <strong>in</strong> Sec.2.4.1.<br />

In narrow quantum wells where the cubic Dresselhaus coupl<strong>in</strong>g is weak compared to the<br />

l<strong>in</strong>ear Dresselhaus and Rashba coupl<strong>in</strong>gs, the sp<strong>in</strong>-orbit field is given by<br />

⎛ ⎞<br />

−α 1 k x +α 2 k y<br />

B SO (k) = −2⎜<br />

⎝ α 1 k y −α 2 k x<br />

⎟<br />

⎠ , (2.18)<br />

0<br />

whichchangesbothitsdirectionanditsamplitude| B SO (k) |= 2 √ (α 2 1 +α2 2 )k2 −4α 1 α 2 k x k y ,<br />

as the direction <strong>of</strong> the momentum k is changed. Accord<strong>in</strong>gly, the electron energy dispersion

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!