11.03.2014 Views

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

Itinerant Spin Dynamics in Structures of ... - Jacobs University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 4: Direction Dependence <strong>of</strong> <strong>Sp<strong>in</strong></strong> Relaxation and Diffusive-Ballistic Crossover 75<br />

Special case: θ = 0<br />

In this case the longitud<strong>in</strong>al direction <strong>of</strong> the wire is [100].<br />

If we neglect the term proportional to W 2 /k x <strong>in</strong> Eq.(4.21) the lowest sp<strong>in</strong> relaxation is<br />

found to be<br />

or<br />

depend<strong>in</strong>g whether<br />

(<br />

1 α<br />

= q2 2<br />

s3 x1 −q 2 ) ( 2<br />

D e τ s 2 + 2<br />

12q 2 s<br />

q 2 s + q2 s3<br />

2<br />

(<br />

1 α<br />

= 3q2 2<br />

s3 x1 −q 2 ) ( ) 2<br />

D e τ s 4 + 2 qs 2 − q2 s3<br />

2<br />

24qs<br />

2<br />

(<br />

α<br />

− q2 2<br />

s3 x1 −q 2 ) ( 2<br />

4 + 2<br />

q 2 s +3 q2 s3<br />

2<br />

)<br />

W 2<br />

)<br />

W 2<br />

W 2<br />

(4.30)<br />

, (4.31)<br />

24qs<br />

2 (4.32)<br />

is negative or positive. This shows that the cubic Dresselhaus term adds not only to<br />

the relaxation rate by a constant term but is also width dependent. However, this width<br />

dependence does not reduce the sp<strong>in</strong> relaxation rate below q 2 s3 /2.<br />

4.3 <strong>Sp<strong>in</strong></strong> relaxation <strong>in</strong> quasi-1D wire with [110] growth direction<br />

To get the sp<strong>in</strong>-relaxation <strong>in</strong> a [110] quantum wire with Rashba and Dresselhaus<br />

SOC aga<strong>in</strong> we have to rotate the spacial coord<strong>in</strong>ate system <strong>of</strong> the Dresselhaus Hamiltonian<br />

Eq.(4.2) but now with the rotation matrix<br />

We get<br />

R =<br />

⎛<br />

⎜<br />

⎝<br />

√1<br />

1<br />

2<br />

0 √2<br />

− 1 √<br />

2<br />

0<br />

1 √2<br />

0 1 0<br />

⎞<br />

H D[110]<br />

γ D<br />

= σ x (−k 2 x k z −2k 2 y k z +k 3 z )<br />

+σ y (4k x k y k z )<br />

⎟<br />

⎠ . (4.33)<br />

+σ z (kx 3 −2k xky 2 −k xkz 2 ). (4.34)<br />

The conf<strong>in</strong>ement <strong>in</strong> z-direction (z ≡[110]) leads to 〈k z 〉 = 〈k 3 z 〉 = 0, and 〈k2 z 〉 = ∫ |∇φ| 2 dz.<br />

The Hamiltonian for the quantum wire <strong>in</strong> [110] direction has then the follow<strong>in</strong>g form

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!