13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

138 <strong>103</strong> <strong>Trigonometry</strong> <strong>Problems</strong><br />

or cos a + cos(b + e) = cos e + cos(a + b). Applying the sum-to-product<br />

formulas again gives<br />

2 cos a + b + e<br />

2<br />

cos a − b − e<br />

2<br />

= 2 cos a + b + e<br />

2<br />

cos e − a − b ,<br />

2<br />

and so cos a−b−e<br />

2<br />

= cos e−a−b<br />

2<br />

. It follows that a = e. Because a = e and<br />

b = d, triangles ABC and AED are congruent.<br />

16. All the angles in triangle ABC are less then 120 ◦ . Prove that<br />

cos A + cos B − cos C<br />

sin A + sin B − sin C > − √<br />

3<br />

3 .<br />

Solution: Consider the triangle A 1 B 1 C 1 , as shown in Figure 5.3, where ̸ A 1 =<br />

120 ◦ − ̸ A, ̸ B 1 = 120 ◦ − ̸ B, and ̸ C 1 = 120 ◦ − ̸ C. The given condition<br />

guarantees the existence of such a triangle.<br />

C<br />

A1<br />

C1<br />

A<br />

B<br />

B1<br />

Figure 5.3.<br />

Applying the triangle inequality in triangle A 1 B 1 C 1 gives B 1 C 1 + C 1 A 1 ><br />

A 1 B 1 ; that is<br />

sin A 1 + sin B 1 > sin C 1<br />

by applying the law of sines to triangle A 1 B 1 C 1 . It follows that<br />

sin(120 ◦ − A) + sin(120 ◦ − B) > sin(120 ◦ − C),<br />

or √<br />

3<br />

2 (cos A + cos B − cos C) + 1 (sin A + sin B − sin C) > 0.<br />

2<br />

Taking into account that a + b>cimplies sin A + sin B − sin C>0, the<br />

above inequality can be rewritten as<br />

√<br />

3 cos A + cos B − cos C<br />

·<br />

2 sin A + sin B − sin C + 1 2 > 0,<br />

from which the conclusion follows.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!