13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

168 <strong>103</strong> <strong>Trigonometry</strong> <strong>Problems</strong><br />

Applying the law of sines to triangle A 1 A 2 A 3 , the last inequality reduces to<br />

3∑<br />

sin A i (cos A i − 2 cos A i+1 A i+2 ) ≥ 0,<br />

i=1<br />

which follows directly from the next Lemma.<br />

Lemma<br />

Proof:<br />

Let ABC be a triangle. Then the Cyclic Sum<br />

∑<br />

sin A(cos A − 2 cos B cos C) = 0.<br />

cyc<br />

By the double-angle formulas, it suffices to show that<br />

∑<br />

sin 2A = 2 ∑ sin A cos A = 4 ∑ sin A cos B cos C.<br />

cyc<br />

cyc<br />

cyc<br />

Applying the addition and subtraction formulas gives<br />

sin A cos B cos C + sin B cos C cos A<br />

= cos C(sin A cos B + sin B cos A)<br />

= cos C sin(A + B) = cos C sin C.<br />

Hence<br />

4 ∑ sin A cos B cos C<br />

cyc<br />

= 2 ∑ cyc<br />

(sin A cos B cos C + sin B cos C cos A)<br />

= 2 ∑ cos C sin C = ∑ sin 2C,<br />

cyc<br />

cyc<br />

as desired.<br />

42. Let ABC be a triangle. Let x,y, and z be real numbers, and let n be a positive<br />

integer. Prove the following four inequalities.<br />

(a) [D. Barrow] x 2 + y 2 + z 2 ≥ 2yzcos A + 2zx cos B + 2xy cos C.<br />

(b) [J. Wolstenholme]<br />

x 2 + y 2 + z 2 ≥ 2(−1) n+1 (yz cos nA + zx cos nB + xy cos nC).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!