13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5. Solutions to Advanced <strong>Problems</strong> 181<br />

Viewing the given equality as a quadratic equation in a and solving for a yields<br />

Note that<br />

√<br />

−bc ± b 2 c 2 − 4 ( b 2 + c 2) + 16<br />

a =<br />

2<br />

.<br />

b 2 c 2 − 4(b 2 + c 2 ) + 16 ≤ b 2 c 2 − 8bc + 16 = (4 − bc) 2 .<br />

For the given equality to hold, we must have b, c ≤ 2, so that 4 − bc ≥ 0.<br />

Hence,<br />

−bc +|4 − bc| −bc + 4 − bc<br />

a ≤ = = 2 − bc,<br />

2<br />

2<br />

or<br />

2 − bc ≥ a. (‡)<br />

Combining the inequalities (†) and (‡) gives<br />

2 − bc = (2 − bc) · 1 ≥ a(b + c − bc) = ab + ac − abc,<br />

or ab + ac + bc − abc ≤ 2, as desired.<br />

45. [Gabriel Dospinescu and Dung Tran Nam] Let s, t, u, v be numbers in the<br />

interval ( 0, π 2<br />

)<br />

with s + t + u + v = π. Prove that<br />

√ √ √ √<br />

2 sin s − 1 2 sin t − 1 2 sin u − 1 2 sin v − 1<br />

+<br />

+<br />

+<br />

≥ 0.<br />

cos s cos t cos u cos v<br />

Solution: Set a = tan s, b = tan t, c = tan u, and d = tan v. Then a, b, c, d<br />

are positive real numbers. Because s + t + u + v = π, it follows that tan(s +<br />

t) + tan(u + v) = 0; that is,<br />

a + b<br />

1 − ab + c + d<br />

1 − cd = 0,<br />

by the addition and subtraction formulas. Multiplying both sides of the last<br />

equation by (1 − ab)(1 − cd) yields<br />

(a + b)(1 − cd) + (c + d)(1 − ab) = 0,<br />

or<br />

a + b + c + d = abc + bcd + cda + dab.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!