13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

186 <strong>103</strong> <strong>Trigonometry</strong> <strong>Problems</strong><br />

or<br />

7 ≥ tan 2 θ 2 + tan 2 θ 3 .<br />

Thus if tan 2 θ 2 + tan 2 θ 3 ≤ 7, then inequality (∗) holds, and we are done.<br />

Assume that tan 2 θ 2 + tan 2 θ 3 > 7. Then tan 2 θ 1 ≥ tan 2 θ 2 ≥<br />

2 7 . Then<br />

√<br />

1 2<br />

cos θ 1 ≤ cos θ 2 = √ ≤<br />

1 + tan 2 θ 2<br />

3 ,<br />

implying that<br />

establishing (∗) again.<br />

cos θ 1 + cos θ 2 + cos θ 3 ≤ 2√ 2<br />

3<br />

Therefore, inequality (∗) is true, as desired.<br />

+ 1 < 2,<br />

48. Let ABC be an acute triangle. Prove that<br />

(sin 2B + sin 2C) 2 sin A + (sin 2C + sin 2A) 2 sin B<br />

+ (sin 2A + sin 2B) 2 sin C ≤ 12 sin A sin B sin C.<br />

First Solution: Applying the addition and subtraction formulas gives<br />

(sin 2B + sin 2C) 2 sin A = 4 sin 2 (B + C)cos 2 (B − C)sin A<br />

= 4 sin 3 A cos 2 (B − C),<br />

because A + B + C = 180 ◦ . Hence it suffices to show that the cyclic sum<br />

∑<br />

sin 3 A cos 2 (B − C)<br />

cyc<br />

is less than or equal to 3 sin A sin B sin C, which follows from<br />

∑<br />

4 sin 3 A cos(B − C) = 12 sin A sin B sin C.<br />

cyc<br />

Indeed, we have<br />

4 sin 3 A cos(B − C)<br />

= 4 sin 2 A sin(B + C)cos(B − C)<br />

= 2 sin 2 A(sin 2B + sin 2C)<br />

= (1 − cos 2A)(sin 2B + sin 2C)<br />

= (sin 2B + sin 2C) − sin 2B cos 2A − sin 2C cos 2A.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!