13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5. Solutions to Advanced <strong>Problems</strong> 185<br />

Now assume that n ≥ 3. We claim that λ = n − 1. Note that λ ≥ n − 1; by<br />

setting θ 2 = θ 3 =···=θ n = θ and letting θ → 0, we find that θ 1 → π 2 , and<br />

so the left-hand side of the desired inequality approaches n − 1. It suffices to<br />

show that<br />

cos θ 1 + cos θ 2 +···+cos θ n ≤ n − 1.<br />

Without loss of generality, assume that θ 1 ≥ θ 2 ≥···≥θ n . Then<br />

It suffices to show that<br />

tan θ 1 tan θ 2 tan θ 3 ≥ 2 √ 2.<br />

cos θ 1 + cos θ 2 + cos θ 3 < 2.<br />

(∗)<br />

Because √ 1 − x 2 ≤ 1 − 1 2 x2 , cos θ i = √ 1 − sin 2 θ i < 1 − 1 2 sin2 θ i . Consequently,<br />

by the arithmetic–geometric means inequality,<br />

cos θ 2 + cos θ 3 < 2 − 1 )<br />

(sin 2 θ 2 + sin 2 θ 3 ≤ 2 − sin θ 2 sin θ 3 .<br />

2<br />

Because<br />

we have<br />

or<br />

tan 2 θ 1 ≥<br />

8<br />

tan 2 θ 2 tan 2 θ 3<br />

,<br />

sec 2 θ 1 ≥ 8 + tan2 θ 2 tan 2 θ 3<br />

tan 2 θ 2 tan 2 θ 3<br />

,<br />

cos θ 1 ≤<br />

tan θ 2 tan θ 3<br />

sin θ 2 sin θ 3<br />

√ = √ .<br />

8 + tan 2 θ 2 tan 2 θ 3 8 cos 2 θ 2 cos 2 θ 3 + sin 2 θ 2 sin 2 θ 3<br />

It follows that<br />

cos θ 1 + cos θ 2 + cos θ 3<br />

< 2 − sin θ 2 sin θ 3<br />

[1 −<br />

It is clear that the equality<br />

]<br />

1<br />

8 cos 2 θ 2 cos 2 θ 3 + sin 2 θ 2 sin 2 .<br />

θ 3<br />

8 cos 2 θ 2 cos 2 θ 3 + sin 2 θ 2 sin 2 θ 3 ≥ 1, (∗∗)<br />

establishes the desired inequality (∗). Inequality (∗∗) is equivalent to<br />

8 + tan 2 θ 2 tan 2 θ 3 ≥ (1 + tan 2 θ 2 )(1 + tan 2 θ 3 ),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!