13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5. Solutions to Advanced <strong>Problems</strong> 145<br />

( )<br />

It suffices to show that b n = cot 2 n−3 π<br />

3<br />

, where b n = a n + 2, n ≥ 1. The<br />

recursive relation becomes<br />

or<br />

b n+1 − 2 = (b n − 2) 2 − 5<br />

2b n<br />

,<br />

b n+1 = b2 n − 1<br />

2b n<br />

.<br />

Assuming, inductively, that b k = cot c k , where c k = 2k−3 π<br />

3<br />

, yields<br />

and we are done.<br />

b k+1 = cot2 c k − 1<br />

2 cot c k<br />

= cot 2c k = cot c k+1 ,<br />

23. [APMC 1982] Let n be an integer with n ≥ 2. Prove that<br />

n∏<br />

k=1<br />

[ )]<br />

π<br />

tan<br />

(1 + 3k<br />

3 3 n =<br />

− 1<br />

n∏<br />

k=1<br />

[ )]<br />

π<br />

cot<br />

(1 − 3k<br />

3 3 n .<br />

− 1<br />

Solution: Let<br />

[ )]<br />

π<br />

u k = tan<br />

(1 + 3k<br />

3 3 n − 1<br />

The desired equality becomes<br />

Set<br />

[ )]<br />

π<br />

and v k = tan<br />

(1 − 3k<br />

3 3 n .<br />

− 1<br />

n∏<br />

u k v k = 1.<br />

k=1<br />

t k = tan 3k−1 π<br />

3 n − 1 .<br />

Applying the addition and and subtraction formulas yields<br />

u k = tan<br />

( )<br />

π<br />

3 + 3k−1 π<br />

3 n − 1<br />

The triple-angle formulas give<br />

=<br />

√ √<br />

3 + tk<br />

3 −<br />

1 − √ tk<br />

and v k =<br />

3t k 1 + √ .<br />

3t k<br />

(∗)<br />

t k+1 = 3t k − tk<br />

3<br />

1 − 3tk<br />

2 ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!