13.04.2014 Views

103 Trigonometry Problems

103 Trigonometry Problems

103 Trigonometry Problems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

184 <strong>103</strong> <strong>Trigonometry</strong> <strong>Problems</strong><br />

47. [China 2003, byYumin Huang] Let n be a fixed positive integer. Determine the<br />

smallest positive real number λ such that for any θ 1 ,θ 2 ,...,θ n in the interval<br />

(<br />

0,<br />

π<br />

2<br />

)<br />

,if<br />

tan θ 1 tan θ 2 ···tan θ n = 2 n/2 ,<br />

then<br />

cos θ 1 + cos θ 2 +···+cos θ n ≤ λ.<br />

Solution: The answer is<br />

⎧ √<br />

3<br />

⎪⎨ 3 , n = 1;<br />

λ = 2 √ 3<br />

3 ⎪⎩<br />

, n = 2;<br />

n − 1, n ≥ 3.<br />

The case n = 1 is trivial. If n = 2, we claim that<br />

cos θ 1 + cos θ 2 ≤ 2√ 3<br />

3 ,<br />

with equality if and only if θ 1 = θ 2 = tan −1 √ 2. It suffices to show that<br />

cos 2 θ 1 + cos 2 θ 2 + 2 cos θ 1 cos θ 2 ≤ 4 3 ,<br />

or<br />

1<br />

1 + tan 2 θ 1<br />

+<br />

√<br />

1<br />

1 + tan 2 + 2<br />

θ 1<br />

1<br />

(<br />

1 + tan 2 θ 1<br />

)(<br />

1 + tan 2 θ 2<br />

) ≤ 4 3 .<br />

Because tan θ 1 tan θ 2 = 2,<br />

(1 + tan 2 θ 1<br />

)(1 + tan 2 θ 2<br />

)<br />

= 5 + tan 2 θ 1 + tan 2 θ 2 .<br />

By setting tan 2 θ 1 + tan θ 2 2<br />

= x, the last inequality becomes<br />

or<br />

√<br />

2 + x 1<br />

5 + x + 2 5 + x ≤ 4 3 ,<br />

√<br />

1<br />

2<br />

5 + x ≤ 14 + x<br />

3(5 + x) .<br />

Squaring both sides and clearing denominators, we get 36(5 + x) ≤ 196 +<br />

28x + x 2 , that is, 0 ≤ x 2 − 8x + 16 = (x − 4) 2 . This establishes our claim.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!