21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

112 CHAPTER 3. MULTIPLE INTEGRALS<br />

Note that the volume V of a solid in 3 is given by<br />

<br />

V= 1dV. (3.10)<br />

S<br />

Since the function being integrated is the constant 1, then the above triple integral<br />

reduces to a double integral of the types that we considered in the previous section<br />

if the solid is bounded above by some surface z= f(x,y) and bounded below by the<br />

xy-plane z=0. There are many other possibilities. For example, the solid could be<br />

bounded below and above by surfaces z=g 1 (x,y) and z=g 2 (x,y), respectively, with y<br />

bounded between two curves h 1 (x) and h 2 (x), and x varies between a and b. Then<br />

∫ b ∫ h2 (x) ∫ g2 (x,y) ∫ b ∫ h2 (x)<br />

V= 1dV= 1dzdydx= (g 2 (x,y)−g 1 (x,y)) dydx<br />

S<br />

a<br />

h 1 (x)<br />

g 1 (x,y)<br />

a<br />

h 1 (x)<br />

just like in equation (3.9). See Exercise 10 for an example.<br />

☛ ✟<br />

✡Exercises<br />

✠<br />

A<br />

For Exercises 1-8, evaluate the given triple integral.<br />

1.<br />

3.<br />

5.<br />

7.<br />

∫ 3 ∫ 2 ∫ 1<br />

0 0 0<br />

∫ π ∫ x ∫ xy<br />

0 0 0<br />

∫ e ∫ y ∫ 1/y<br />

1 0 0<br />

∫ 2 ∫ 4 ∫ 3<br />

1<br />

2<br />

0<br />

xyzdxdydz 2.<br />

x 2 sinzdzdydx 4.<br />

x 2 zdxdzdy 6.<br />

1dxdydz 8.<br />

∫ 1 ∫ x ∫ y<br />

0 0 0<br />

∫ 1 ∫ z ∫ y<br />

0 0 0<br />

∫ 2 ∫ y 2∫ z 2<br />

xyzdzdydx<br />

ze y2 dxdydz<br />

1 0 0<br />

∫ 1 ∫ 1−x ∫ 1−x−y<br />

0<br />

0<br />

0<br />

yzdxdzdy<br />

1dzdydx<br />

9. Let M be a constant. Show that ∫ z 2<br />

z 1<br />

∫ y2<br />

y 1<br />

∫ x2<br />

x 1<br />

Mdxdydz= M(z 2 −z 1 )(y 2 −y 1 )(x 2 − x 1 ).<br />

B<br />

10. Find the volume V of the solid S bounded by the three coordinate planes, bounded<br />

above by the plane x+y+z=2, and bounded below by the plane z= x+y.<br />

C<br />

11. Show that<br />

∫ b ∫ z ∫ y<br />

a<br />

a<br />

a<br />

f(x)dxdydz=<br />

∫ b<br />

a<br />

(b−x) 2<br />

2<br />

f(x)dx. (Hint: Think of how changing<br />

the order of integration in the triple integral changes the limits of integration.)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!