21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.4 Surface Integrals and the Divergence Theorem 159<br />

4.4.3(a)). Andasthecirclerevolvesaroundthez-axis,thelinesegmentfromtheorigin<br />

to the center of that circle sweeps out an angle v with the positive x-axis (see Figure<br />

4.4.3(b)). Thus, the torus can be parametrized as:<br />

x=(b+acosu)cosv, y=(b+acosu)sinv, z=asinu, 0≤u≤2π, 0≤v≤2π<br />

So for the position vector<br />

we see that<br />

r(u,v)= x(u,v)i+y(u,v)j+z(u,v)k<br />

= (b+acosu)cosvi+(b+acosu)sinvj+asinuk<br />

∂r<br />

=−asinu cosvi−asinu sinvj+acosuk<br />

∂u<br />

∂r<br />

∂v =−(b+acosu)sinvi+(b+acosu)cosvj+0k,<br />

and so computing the cross product gives<br />

∂r<br />

∂u ×∂r =−a(b+acosu)cosv cosui−a(b+acosu)sinv cosuj−a(b+acosu)sinuk,<br />

∂v<br />

which has magnitude<br />

Thus, the surface area of T is<br />

<br />

S=<br />

∥ ∥∥∥∥∥ ∂r<br />

∂u ×∂r<br />

∂v∥ = a(b+acosu).<br />

=<br />

=<br />

=<br />

=<br />

1dσ<br />

Σ<br />

∫ 2π ∫ 2π<br />

0 0<br />

∫ 2π ∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

= 4π 2 ab<br />

0<br />

∂r<br />

∥∂u ×∂r<br />

∂v∥ dudv<br />

a(b+acosu)dudv<br />

(<br />

abu+a 2 sinu∣<br />

2πabdv<br />

∣ u=2π<br />

u=0<br />

)<br />

dv<br />

Since ∂r<br />

∂u and∂r ∂v<br />

aretangenttothesurfaceΣ(i.e. lieinthetangentplanetoΣateach<br />

point onΣ), then their cross product ∂r<br />

∂u ×∂r ∂v<br />

is perpendicular to the tangent plane to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!