21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

140 CHAPTER 4. LINE AND SURFACE INTEGRALS<br />

Theorem 4.1. For a vector field f(x,y)=P(x,y)i+Q(x,y)jand a curveC with a smooth<br />

parametrization x= x(t), y=y(t), a≤t≤band position vector r(t)= x(t)i+y(t)j,<br />

∫ ∫<br />

f·dr= f·Tds, (4.15)<br />

where T(t)= r′ (t)<br />

‖r ′ (t)‖<br />

is the unit tangent vector to C at (x(t),y(t)).<br />

C<br />

If the vector field f(x,y) represents the force moving an object along a curve C, then<br />

the work W done by this force is<br />

∫ ∫<br />

W= f·Tds= f·dr. (4.16)<br />

C<br />

C<br />

C<br />

Example 4.2. Evaluate ∫ C (x2 +y 2 )dx+2xydy, where:<br />

(a) C : x=t, y=2t, 0≤t≤1<br />

(b) C : x=t, y=2t 2 , 0≤t≤1<br />

Solution: Figure 4.1.4 shows both curves.<br />

(a) Since x ′ (t)=1and y ′ (t)=2, then<br />

∫ ∫ 1 (<br />

(x 2 +y 2 )dx+2xydy= (x(t) 2 +y(t) 2 )x ′ (t)+2x(t)y(t)y ′ (t) ) dt<br />

C<br />

=<br />

=<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

= 13t3<br />

3<br />

(<br />

(t 2 +4t 2 )(1)+2t(2t)(2) ) dt<br />

13t 2 dt<br />

∣<br />

1<br />

0<br />

= 13 3<br />

(b) Since x ′ (t)=1and y ′ (t)=4t, then<br />

∫ ∫ 1 (<br />

(x 2 +y 2 )dx+2xydy= (x(t) 2 +y(t) 2 )x ′ (t)+2x(t)y(t)y ′ (t) ) dt<br />

C<br />

=<br />

=<br />

0<br />

∫ 1<br />

0<br />

∫ 1<br />

0<br />

(<br />

(t 2 +4t 4 )(1)+2t(2t 2 )(4t) ) dt<br />

(t 2 +20t 4 )dt<br />

∣ ∣∣∣∣∣<br />

= t3 1<br />

3 +4t5 = 1 3 +4= 13 3<br />

0<br />

y<br />

(1,2)<br />

2<br />

x<br />

0 1<br />

Figure 4.1.4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!