21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

190 Appendix A: Answers and Hints to Selected Exercises<br />

parallel to c (c) Hint: Think of the<br />

functions as position vectors.<br />

15. Hint: Theorem 1.16<br />

Section 1.9 (p. 63)<br />

1. 3π√ 5 2<br />

2<br />

3.<br />

((<br />

t by<br />

27s+16<br />

2<br />

27 (133/2 −8) 5. Replace<br />

) 2/3−4 )/<br />

9 6. Hint: Use<br />

Theorem 1.20(e), Example 1.37, and<br />

Theorem 1.16 7. Hint: Use Exercise 6.<br />

9. Hint: Use f ′ (t) = ‖f(t)‖T, differentiate<br />

that to get f ′′ (t), put those expressions<br />

into f ′ (t) × f ′′ (t), then write<br />

T ′ (t) in terms of N(t). 11. T(t) =<br />

√<br />

1<br />

(−sint,cost,1), N(t) = (−cost,−sint,0),<br />

2<br />

B(t)= 1 √<br />

2<br />

(sint,−cost,1),κ(t)=1/2<br />

Chapter 2<br />

Section 2.1 (p. 70)<br />

1. domain: 2 , range: [−1,∞) 3. domain:<br />

{(x,y) : x 2 +y 2 ≥ 4}, range: [0,∞)<br />

5. domain: 3 , range: [−1,1] 7. 1<br />

9. does not exist 11. 2 13. 2 15. 0<br />

17. does not exist<br />

Section 2.2 (p. 74)<br />

1. ∂f ∂f ∂f<br />

∂x<br />

= 2x,<br />

∂y<br />

= 2y 3.<br />

∂x = x(x2 +y+4) −1/2 ,<br />

∂f<br />

∂y<br />

= 1 2 (x2 + y+4) −1/2 ∂f<br />

5.<br />

∂x<br />

= ye xy + y,<br />

∂f<br />

∂y = xexy + x 7. ∂f<br />

∂x = 4x3 , ∂f<br />

∂y = 0<br />

9. ∂f<br />

∂x = x(x2 +y 2 ) −1/2 , ∂f<br />

∂y = y(x2 +y 2 ) −1/2<br />

11. ∂f<br />

∂x = 2x<br />

3 (x2 +y+4) −2/3 ,<br />

∂f<br />

∂y = 1 3 (x2 +y+4) −2/3 13. ∂f<br />

∂x =−2xe−(x2 +y 2) ,<br />

∂f<br />

∂y =−2ye−(x2 +y 2 )<br />

15. ∂f<br />

∂x = ycos(xy),<br />

∂f<br />

∂y = xcos(xy) 17. ∂2 f<br />

= 2, ∂2 f<br />

= 2,<br />

∂x 2 ∂y 2<br />

∂ 2 f<br />

∂x∂y = 0 19. ∂2 f<br />

= (y+4)(x 2 +y+4) −3/2 ,<br />

∂x 2<br />

∂ 2 f<br />

=− 1 ∂y 2 4 (x2 +y+4) −3/2 ,<br />

∂ 2 f<br />

∂x∂y =−1 2 x(x2 +y+4) −3/2<br />

21. ∂2 f<br />

= y 2 e xy , ∂2 f<br />

= x 2 e xy ,<br />

∂x 2 ∂y 2<br />

∂ 2 f<br />

∂x∂y = (1+ xy)exy +1 23. ∂2 f<br />

∂ 2 f<br />

= 0,<br />

∂y 2<br />

∂ 2 f<br />

=−y −2 ,<br />

∂y 2<br />

∂ 2 f<br />

∂x∂y = 0 25. ∂2 f<br />

∂ 2 f<br />

∂x∂y = 0<br />

Section 2.3 (p. 77)<br />

∂x 2 = 12x 2 ,<br />

∂x 2 =−x −2 ,<br />

1. 2x+3y−z−3=0 3.−2x+y−z−2=0<br />

5. x+2y=z 7. 1 2 (x−1)+ 4 9 (y−2)+ √<br />

11<br />

12 (z−<br />

2 √ 11<br />

3<br />

)=0 9. 3x+4y−5z=0<br />

Section 2.4 (p. 82)<br />

x<br />

1. (2x,2y) 3. ( √ , y<br />

√ )<br />

x 2 +y 2 +4 x 2 +y 2 +4<br />

5. (1/x,1/y) 7. (yzcos(xyz),xzcos(xyz),xycos(xyz))<br />

9. (2x,2y,2z) 11. 2 √ 2 13.<br />

1 √3<br />

15. √ 3 cos(1) 17. increase: (45,20),<br />

decrease: (−45,−20)<br />

Section 2.5 (p. 88)<br />

1. local min. (1,0); saddle pt. (−1,0)<br />

3. local min. (1,1); local max. (−1,−1);<br />

saddle pts. (1,−1),(−1,1) 5. local min.<br />

(1,−1); saddlept. (0,0) 7. localmin. (0,0)<br />

9. local min. (−1,1/2) 11. width = height<br />

= depth=10 13. x=y=4, z=2<br />

Section 2.6 (p. 95)<br />

2. (x 0 ,y 0 ) = (0,0) : → (0.2858,−0.3998);<br />

(x 0 ,y 0 )=(1,1) :→(1.03256,−1.94037)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!