21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

122 CHAPTER 3. MULTIPLE INTEGRALS<br />

Example 3.11. Find the volume V inside the cone z= √ x 2 +y 2 for 0≤z≤1.<br />

Solution: Using vertical slices, we see that<br />

( )<br />

V= (1−z)dA= 1−<br />

√x 2 +y 2 dA,<br />

1<br />

z<br />

x 2 +y 2 = 1<br />

R<br />

R<br />

where R={(x,y) : x 2 +y 2 ≤ 1} is the unit disk in 2<br />

(see Figure 3.5.3). In polar coordinates (r,θ) we know<br />

that √ x 2 +y 2 = r and that the unit disk R is the set<br />

R ′ ={(r,θ) : 0≤r≤1,0≤θ≤2π}. Thus,<br />

V=<br />

=<br />

=<br />

=<br />

∫ 2π ∫ 1<br />

0 0<br />

∫ 2π ∫ 1<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

0<br />

(1−r)rdrdθ<br />

(r−r 2 )drdθ<br />

(<br />

r 2 2 − r3 3<br />

1<br />

6 dθ<br />

∣<br />

∣ r=1<br />

r=0<br />

)<br />

dθ<br />

y<br />

0<br />

x<br />

Figure 3.5.3 z= √ x 2 +y 2<br />

= π 3<br />

In a similar fashion, it can be shown (see Exercises 5-6) that triple integrals in<br />

cylindrical and spherical coordinates take the following forms:<br />

Triple Integral in Cylindrical Coordinates<br />

<br />

f(x,y,z)dxdydz= f(rcosθ,rsinθ,z)rdrdθdz, (3.25)<br />

S<br />

S ′<br />

where the mapping x=rcosθ, y=rsinθ, z=zmaps the solid S ′ in rθz-space onto<br />

the solid S in xyz-space in a one-to-one manner.<br />

Triple Integral in Spherical Coordinates<br />

<br />

f(x,y,z)dxdydz= f(ρsinφ cosθ,ρsinφ sinθ,ρcosφ)ρ 2 sinφdρdφdθ,<br />

S<br />

S ′ (3.26)<br />

where the mapping x=ρsinφ cosθ, y=ρsinφ sinθ, z=ρcosφ maps the solid S ′ in<br />

ρφθ-space onto the solid S in xyz-space in a one-to-one manner.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!