21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

172 CHAPTER 4. LINE AND SURFACE INTEGRALS<br />

Note: The condition in Stokes’ Theorem that the surfaceΣhave a (continuously<br />

varying) positive unit normal vector n and a boundary curveC traversed n-positively<br />

can be expressed more precisely as follows: if r(t) is the position vector for C and<br />

T(t)=r ′ (t)/‖r ′ (t)‖ is the unit tangent vector to C, then the vectors T, n, T×n form a<br />

right-handed system.<br />

Also, it should be noted that Stokes’ Theorem holds even when the boundary curve<br />

C is piecewise smooth.<br />

Example 4.14. Verify Stokes’ Theorem for f(x,y,z) = zi+ xj+yk whenΣis the<br />

paraboloid z= x 2 +y 2 such that z≤1(see Figure 4.5.5).<br />

Solution: The positive unit normal vector to the surface<br />

z=z(x,y)= x 2 +y 2 is<br />

n= −∂z ∂x i−∂z<br />

√<br />

1+ ( ∂z<br />

∂x<br />

∂y j+k<br />

) 2+ ( ) = −2xi−2yj+k √<br />

∂z<br />

2<br />

1+4x 2 +4y ,<br />

2<br />

∂y<br />

and curl f=(1−0)i+(1−0)j+(1−0)k=i+j+k, so<br />

√<br />

(curl f)·n=(−2x−2y+1)/ 1+4x 2 +4y 2 .<br />

SinceΣcan be parametrized as r(x,y)= xi+yj+(x 2 + y 2 )k<br />

for (x,y) in the region D={(x,y) : x 2 +y 2 ≤ 1}, then<br />

<br />

(curl f)·ndσ= (curl f)·n<br />

∂r<br />

∥∂x ×∂r<br />

∂y∥ dA<br />

Σ<br />

D<br />

<br />

−2x−2y+1<br />

= √<br />

√1+4x 2 +4y 2 dA<br />

1+4x 2 +4y 2<br />

D<br />

D<br />

∫ 2π ∫ 1<br />

1<br />

Σ<br />

y<br />

0<br />

x<br />

Figure 4.5.5 z= x 2 +y 2<br />

<br />

= (−2x−2y+1)dA, so switching to polar coordinates gives<br />

=<br />

=<br />

=<br />

=<br />

0 0<br />

∫ 2π ∫ 1<br />

0<br />

∫ 2π<br />

0<br />

∫ 2π<br />

0<br />

0<br />

(−2rcosθ−2rsinθ+1)rdrdθ<br />

(−2r 2 cosθ−2r 2 sinθ+r)drdθ<br />

(<br />

− 2r3 2r3<br />

3<br />

cosθ−<br />

3 sinθ+ r2 2<br />

(<br />

−<br />

2<br />

3 cosθ− 2 3 sinθ+ 1 2)<br />

dθ<br />

=− 2 3 sinθ+ 2 3 cosθ+ 1 2 θ ∣ ∣∣∣ 2π<br />

0 =π.<br />

∣<br />

∣ r=1<br />

r=0<br />

)<br />

dθ<br />

z<br />

n<br />

C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!