21.04.2014 Views

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

Michael Corral: Vector Calculus

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.2 <strong>Vector</strong> Algebra 11<br />

Theorem 1.3. Let v=(v 1 ,v 2 ), w=(w 1 ,w 2 ) be vectors in 2 , and let k be a scalar. Then<br />

(a) kv=(kv 1 ,kv 2 )<br />

(b) v + w=(v 1 +w 1 ,v 2 +w 2 )<br />

Proof: (a) Without loss of generality, we assume that v 1 ,v 2 > 0 (the other possibilities<br />

are handled in a similar manner). If k=0 then kv=0v=0=(0,0)=(0v 1 ,0v 2 )=<br />

(kv 1 ,kv 2 ), which is what we needed to show. If k0, then (kv 1 ,kv 2 ) lies on a line with<br />

slope kv 2<br />

kv 1<br />

= v 2<br />

v 1<br />

,whichisthesameastheslopeofthelineonwhichv(andhencekv)lies,<br />

and(kv 1 ,kv 2 )pointsinthesamedirectiononthatlineaskv. Also,byformula(1.3)the<br />

magnitude of (kv 1 ,kv 2 ) is √ √ √ √<br />

(kv 1 ) 2 +(kv 2 ) 2 = k 2 v 2 1+k 2 v 2 2= k 2 (v 2 1+v 2 2)=|k| v 2 1+v 2 2=<br />

|k|‖v‖. So kv and (kv 1 ,kv 2 ) have the same magnitude and direction. This proves (a).<br />

(b) Without loss of generality, we assume that<br />

v 1 ,v 2 ,w 1 ,w 2 > 0(theotherpossibilitiesarehandled<br />

in a similar manner). From Figure 1.2.5,<br />

we see that when translating w to start at<br />

the end of v, the new terminal point of w is<br />

(v 1 + w 1 ,v 2 + w 2 ), so by the definition of v+w<br />

this must be the terminal point of v+w. This<br />

proves (b).<br />

QED<br />

y<br />

v 2 +w 2<br />

v<br />

w 2<br />

w w 2<br />

w v+w<br />

v 2<br />

w v 1<br />

0 w 1 v 1 v 1 +w 1<br />

Figure 1.2.5<br />

Theorem1.4. Letv=(v 1 ,v 2 ,v 3 ),w=(w 1 ,w 2 ,w 3 )bevectorsin 3 ,letkbeascalar. Then<br />

(a) kv=(kv 1 ,kv 2 ,kv 3 )<br />

(b) v + w=(v 1 +w 1 ,v 2 +w 2 ,v 3 +w 3 )<br />

The following theorem summarizes the basic laws of vector algebra.<br />

Theorem 1.5. For any vectors u, v, w, and scalars k,l, we have<br />

(a) v+w=w+v Commutative Law<br />

(b) u+(v+w)=(u+v)+w<br />

(c) v+0=v=0+v<br />

(d) v+(−v)=0<br />

(e) k(lv)=(kl)v<br />

(f) k(v+w)=kv+kw<br />

(g) (k+l)v=kv+lv<br />

Associative Law<br />

Additive Identity<br />

Additive Inverse<br />

Associative Law<br />

Distributive Law<br />

Distributive Law<br />

Proof: (a) We already presented a geometric proof of this in Figure 1.2.4(a).<br />

(b)Toillustratethedifferencebetweenanalyticproofsandgeometricproofsinvector<br />

algebra, we will present both types here. For the analytic proof, we will use vectors<br />

in 3 (the proof for 2 is similar).<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!