27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– 104 –<br />

C<strong>on</strong>sider first the commutator of two supersymmetry variati<strong>on</strong>s applied to a bos<strong>on</strong>ic<br />

field X µ :<br />

[δ ɛ1 , δ ɛ2 ]X µ = i¯ɛ 1 δ ɛ2 ψ µ − i¯ɛ 1 δ ɛ2 ψ µ = i 2(¯ɛ1 ρ α ɛ 2 − ¯ɛ 2 ρ α ɛ 1<br />

)<br />

∂α X µ = i¯ɛ 1 ρ α ɛ 2 ∂ α X µ ,<br />

where the last formula stems from the spin-flip property. We see that the commutator<br />

of two super-symmetry transformati<strong>on</strong>s generates a diffeomorphism transformati<strong>on</strong><br />

[δ ɛ1 , δ ɛ2 ]X µ = ξ α ∂ α X µ<br />

with the parameter ξ α = i¯ɛ 1 ρ α ɛ 2 . In fact, this is not an arbitrary diffeomorohism,<br />

rather it is a c<strong>on</strong>formal transformati<strong>on</strong>, because ξ α is nothing else as a c<strong>on</strong>formal<br />

Killing vector! Thus, bilinear combinati<strong>on</strong>s made of c<strong>on</strong>formal spinors<br />

C<strong>on</strong>sider now the commutator of two supersymmetry variati<strong>on</strong>s applied to a<br />

fermi<strong>on</strong> ψ µ :<br />

[δ ɛ1 , δ ɛ2 ]ψ µ = 1 2 ∂ α(δ ɛ1 X µ )ρ α ɛ 2 − 1 2 ∂ α(δ ɛ2 X µ )ρ α ɛ 1 = i 2 ∂ α(¯ɛ 1 ψ µ )ρ α ɛ 2 − i 2 ∂ α(¯ɛ 2 ψ µ )ρ α ɛ 1<br />

Therefore,<br />

[δ ɛ1 , δ ɛ2 ]ψ µ = i 2 (∂ α¯ɛ 1 ψ µ )ρ α ɛ 2 − i 2 (∂ α¯ɛ 2 ψ µ )ρ α ɛ 1 +<br />

+ i 2 (¯ɛ 1∂ α ψ µ )ρ α ɛ 2 − i 2 (¯ɛ 2∂ α ψ µ )ρ α ɛ 1 (6.5)<br />

C<strong>on</strong>straints<br />

In the original (gauge-unfixed) theory we have a world-sheet metric (vielbein) and<br />

the gravitino field. They are removed up<strong>on</strong> impositi<strong>on</strong> of the superc<strong>on</strong>formal gauge.<br />

However, before we fix the gauge, the metric and the gravitino have their equati<strong>on</strong>s<br />

of moti<strong>on</strong> which become the c<strong>on</strong>straints <strong>on</strong> the other fields of the theory after fixing<br />

the gauge. The stress tensor in now defined as<br />

T αβ = − 2π e<br />

δS<br />

e αa .<br />

We can also define the supercurrent as resp<strong>on</strong>se of the acti<strong>on</strong> for variati<strong>on</strong> of the<br />

gravitino field<br />

G α = −i 2π δS<br />

e δ ¯χ . α<br />

Analogously to what was in the bos<strong>on</strong>ic case the stress tensor T αβ will generate<br />

c<strong>on</strong>formal transformati<strong>on</strong>s, while the new object G α appears to be a generator of the<br />

supersymmetries. Equati<strong>on</strong>s of moti<strong>on</strong><br />

δe β a<br />

T αβ = 0 = G α

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!