27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

– 36 –<br />

Let us outline the computati<strong>on</strong> of this bracket.<br />

{α − m , α− n } = n p<br />

i α<br />

i<br />

m<br />

p +<br />

n p<br />

i α<br />

i<br />

m<br />

p +<br />

, pj α j o<br />

n<br />

p + +<br />

+ √<br />

πT<br />

p +<br />

√<br />

πT<br />

p +<br />

X<br />

k≠m,0<br />

α i m−k αi k , pj α j n<br />

p +<br />

n p<br />

i α<br />

i<br />

m<br />

p + , X<br />

α j o<br />

n−l αj −<br />

l<br />

l≠n,0<br />

√<br />

πT<br />

+ 2πT<br />

−im pi p i<br />

(p + ) 2 δ n+m −2i(m − n)<br />

(p + ) 2 pi α i n+m<br />

| {z } | {z }<br />

first bracket sec<strong>on</strong>d and third brackets<br />

√<br />

πT<br />

+ X<br />

p + α j o<br />

n−l αj =<br />

l<br />

l≠n,0<br />

√<br />

πT n p<br />

i α<br />

i<br />

n<br />

p + p + , X<br />

α j o<br />

m−l αj + πT n X<br />

l<br />

(p<br />

l≠m,0<br />

) 2 α i m−k αi k ,<br />

X<br />

α j o<br />

n−l αj l<br />

k≠m,0<br />

l≠n,0<br />

0<br />

1<br />

X<br />

@−i(m<br />

(p + ) 2 − n)<br />

α i n+m−k αi A<br />

k .<br />

k≠m+n,0<br />

(3.81)<br />

| {z }<br />

forth bracket<br />

Thus, we are getting<br />

0<br />

1<br />

{α − m , α− n } = −im pi p i<br />

(p + ) 2 δ n+m + 2πT<br />

∞X<br />

@−i(m<br />

(p + ) 2 − n) α i n+m−k αi A<br />

k ,<br />

k=−∞<br />

where due to α i 0 = √ pi we combined the sec<strong>on</strong>d and a third terms into <strong>on</strong>e sum. If m + n ≠ 0 then the first term vanishes and we<br />

4πT<br />

can rewrite the last formula as<br />

{α − m , α− n } = √<br />

4πT<br />

p +<br />

<br />

−i(m − n)α − <br />

m+n .<br />

If n = −m then in eq.(3.81) c<strong>on</strong>tributi<strong>on</strong> from the sec<strong>on</strong>d and the third term vanishes and we get<br />

0<br />

1<br />

{α − m , α− −m } = −im pi p i<br />

(p + ) 2 + 2πT @−2im X √ 0 √<br />

(p + ) 2 α i 4πT πT h p i ! 2<br />

−k αi A<br />

k ≡ −2im @<br />

p<br />

k≠0<br />

+ p + √ + X α i k −ki 1<br />

αi A .<br />

4πT<br />

k≠0<br />

Therefore,<br />

√ 0 √<br />

{α − 4πT πT<br />

m , α− −m } = −2im @<br />

p + p +<br />

1<br />

X ∞ α i k αi A<br />

−k .<br />

k=−∞<br />

It is therefore natural to define<br />

α − 0<br />

≡ √<br />

πT<br />

p +<br />

∞ X<br />

k=−∞<br />

α i k αi −k .<br />

With this definiti<strong>on</strong> we obtained a universal formula (valid for all indices m and n):<br />

{α − m , α− n } = √<br />

4πT<br />

p +<br />

<br />

−i(m − n)α − <br />

m+n .<br />

Also we c<strong>on</strong>clude that with this definiti<strong>on</strong><br />

p − = √ πT (α − 0 + ᾱ− 0 ) .<br />

Thus, <strong>on</strong>e finds the following result<br />

{α − m, α − n } =<br />

√<br />

4πT<br />

p + (<br />

−i(m − n)α<br />

−<br />

m+n<br />

)<br />

.<br />

If we introduce<br />

L n = p+<br />

√<br />

4πT<br />

α − n .<br />

we therefore find<br />

{L n , L m } = −i(n − m)L n+m<br />

which is the classical Virasoro algebra! Thus, in the light-c<strong>on</strong>e gauge the Virasoro<br />

algebra is carried over by the l<strong>on</strong>gitudinal oscillators α − n .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!