27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

– 54 –<br />

where we assume that τ 1 > τ 2 . By using the formula (4.12) we find<br />

〈V (k 1 , τ 1 )V (k 2 , τ 2 )〉 = e iα′ k 2 1 τ 1+iα ′ k 2 2 τ 2<br />

e k 1 k 2<br />

πT log(eiτ 1−e iτ 2) 〈0| : V (k 1 , τ 1 )V (k 2 , τ 2 ) : |0〉 .<br />

The vacuum expectati<strong>on</strong> value of the normal-ordered expressi<strong>on</strong> <strong>on</strong> the right hand<br />

side reduces to the c<strong>on</strong>tributi<strong>on</strong> of the zero modes <strong>on</strong>ly and we get<br />

〈V (k 1 , τ 1 )V (k 2 , τ 2 )〉 = e iα′ k1 2τ 1+iα ′ k2 2τ 2<br />

e 2α′ k 1 k 2 log(e iτ 1−e iτ2) 〈0|e i(kµ 1 +kµ 2 )x µ<br />

|0〉 .<br />

} {{ }<br />

δ(k 1 +k 2 )<br />

Thus, the two-point functi<strong>on</strong> is n<strong>on</strong>-zero <strong>on</strong>ly if k 1 = k = −k 2 . In this case we get<br />

We thus find that<br />

Four-tachy<strong>on</strong> scattering amplitude<br />

〈V (k, τ 1 )V (−k, τ 2 )〉 = eiα′ k 2 (τ 1 +τ 2 )<br />

(e iτ 1 − e<br />

iτ 2) 2α ′ k 2 .<br />

〈V (k, τ 1 )V (−k, τ 2 )〉 = ei∆(τ 1+τ 2 )<br />

(e iτ 1 − e<br />

iτ 2) 2∆ .<br />

Here we compute the scattering amplitude of four tachy<strong>on</strong>ic particles. This is the<br />

famous Veneziano amplitude which subsequently led to discovery of string theory.<br />

The amplitude is defines as<br />

A =<br />

∫ ∞<br />

0<br />

dτ 〈k 4 |V (k 3 , τ)V (k 2 , 0)|k 1 〉<br />

Here 〈k 4 | is understood in an unusual way 〈k 4 | = 〈0|e ikµ 4 x µ<br />

. Using the definiti<strong>on</strong> of<br />

the tachy<strong>on</strong>ic vertex operators and the formula (4.12) <strong>on</strong>e finds<br />

V (k 3 , τ)V (k 2 , 0) = e iα′ k 2 3 τ : V (k 3 , τ) :: V (k 2 , 0) :<br />

= e iα′ k 2 3 τ e −kµ 3 kν 2 〈X µ(τ)X ν (0)〉 : V (k 3 , τ)V (k 2 , 0) :<br />

Recalling the open string propagator at σ = σ ′ = 0:<br />

( )<br />

〈X(τ)X(0)〉 = − ηµν<br />

πT log e iτ − 1 .<br />

Thus we find<br />

A =<br />

∫ ∞<br />

Further simplificati<strong>on</strong> gives<br />

A =<br />

=<br />

=<br />

0<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

dτ e iα′ k 2 3 τ e 2α′ (k 2 k 3 ) log(e iτ −1) 〈k 4 |e i(kµ 2 +kµ 3 )x µ<br />

e i2α′ k µ 3 p µτ |k 1 〉<br />

dτ e iα′ k3 2τ (e iτ − 1) 2α′ (k 2 k 3 ) e 2iα′ (k 3 k 1 )τ δ ( ∑<br />

4 )<br />

k i<br />

i=1<br />

dτ e iα′ k3 2τ e 2iα′ (k 1 +k 2 )k 3 τ (1 − e −iτ ) 2α′ (k 2 k 3 ) δ ( ∑<br />

4 )<br />

k i<br />

i=1<br />

dτ e −iα′ k3 2τ e −2iα′ (k 3 k 4 )τ (1 − e −iτ ) 2α′ (k 2 k 3 ) δ ( ∑<br />

4 )<br />

k i .<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!