27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– 129 –<br />

and also<br />

g kl (x + δx) = g kl<br />

(x i + ξ i − 1 )<br />

2 Γi j 1 j 2<br />

ξ j 1<br />

ξ j 2<br />

+ · · · = g kl (x) + ∂ k g ij ξ k + · · ·<br />

Thus, at the linearized level we find that<br />

)<br />

g ij(ξ) ′ =<br />

(δ i k − Γ k inξ<br />

)(δ n j l − Γ l jmξ<br />

)(g m kl (φ) + ∂ p g kl ξ p + · · ·<br />

)<br />

= g ij (x) +<br />

(∂ n g ij − Γ k ing kj − Γ k jng ki ξ n + · · ·<br />

} {{ }<br />

D ng ij<br />

We see that<br />

g ′ ij(ξ) = g ij (x) + D k g ij (x)ξ k + · · ·<br />

(D.1)<br />

It is important to realize that the coordinates ξ k depend <strong>on</strong> x because they define<br />

the tangent vector to the manifold at the point x. Under reparametrizati<strong>on</strong>s of<br />

x → x ′ the object ξ k (x) transforms as a vector! The expansi<strong>on</strong> (D.1) is covariant<br />

under general coordinate transformati<strong>on</strong>s x → x ′ because it includes the tensorial<br />

quantities <strong>on</strong>ly.<br />

In the case of the minimal c<strong>on</strong>necti<strong>on</strong> (c<strong>on</strong>necti<strong>on</strong> compatible with the metric)<br />

we have D k g ij = 0. This, the expansi<strong>on</strong> of the metric start from the quadratic order<br />

in ξ i . Extending this calculati<strong>on</strong> to higher orders in ξ <strong>on</strong>e finds<br />

g ′ ij(ξ) = g ij (x) − 1 3 R ik 1 jk 2<br />

ξ k 1<br />

ξ k 2<br />

− 1 3! D k 1<br />

R ik2 jk 3<br />

ξ k 1<br />

ξ k 2<br />

ξ k 3<br />

+ · · ·<br />

Also we recall the transformati<strong>on</strong> property of the Christoffel c<strong>on</strong>necti<strong>on</strong><br />

(<br />

Γ k′ ∂xk′<br />

p ′ q ′(ξ) =<br />

∂x k<br />

∂x p<br />

Γ k pq<br />

∂x p′<br />

∂x q<br />

∂x ′q′ + ∂2 x k<br />

∂x p′ ∂x q′ )<br />

,<br />

where x i ≡ φ i and x ′i ≡ φ i + π i . Expanding the r.h.s. of the last equati<strong>on</strong> in ξ i it is<br />

easy to see that expansi<strong>on</strong> does not c<strong>on</strong>tain the c<strong>on</strong>stant piece because the c<strong>on</strong>stant<br />

terms in the bracket cancel against each other, in other words, in the Riemann normal<br />

coordinates we have<br />

Γ k′<br />

p ′ q ′(ξ) = O(ξ)<br />

In the Riemann normal coordinate system die to the vanishing of Γ k pq at ξ = 0 the<br />

geodesic equati<strong>on</strong> takes a form of the free moti<strong>on</strong> ¨λ = 0. This is coordinate system<br />

corresp<strong>on</strong>ds to the rest frame of a freely falling observer.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!