27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– 15 –<br />

This situati<strong>on</strong> should persist in any Lorentz frame. At any point <strong>on</strong> a string worldsheet<br />

<strong>on</strong>e should always be able to find two vectors: <strong>on</strong>e is time-like and another is<br />

space-like.<br />

C<strong>on</strong>sider S µ (λ) = ∂Xµ + λ ∂Xµ<br />

∂τ ∂σ<br />

must be space- or time-like as λ varies.<br />

S µ S µ = Ẋ2 + 2λẊX′ + λ 2 X ′2 ≡ y(λ) .<br />

Discriminant must be positive then there are two roots and therefore the regi<strong>on</strong>s of<br />

λ with time- and space-like vectors. Discriminant is<br />

(ẊX′ ) 2 − Ẋ2 X ′2 > 0 .<br />

This c<strong>on</strong>diti<strong>on</strong> guarantees the causal propagati<strong>on</strong> of string.<br />

Acti<strong>on</strong> is invariant under reparametrizati<strong>on</strong>s<br />

δX µ = ξ α ∂ α X µ ,<br />

ξ α = 0 <strong>on</strong> the boundary<br />

Two possibilities:<br />

• Open strings: 0 ≤ σ ≤ π<br />

• Closed strings: 0 ≤ σ ≤ 2π<br />

Equati<strong>on</strong>s of moti<strong>on</strong>:<br />

Variati<strong>on</strong><br />

δS<br />

δX µ = ∫ τ2<br />

= −<br />

+<br />

dτ<br />

τ 1<br />

∫ τ2<br />

τ<br />

∫ 1<br />

π<br />

0<br />

S =<br />

∫ π<br />

dτ<br />

0<br />

∫ π<br />

∫ τ2<br />

τ 1<br />

dτ<br />

( δL<br />

dσ<br />

0<br />

dσ<br />

dσ δL<br />

δẊµ δXµ | τ 2<br />

τ 1<br />

+<br />

• Open string boundary c<strong>on</strong>diti<strong>on</strong>s:<br />

• X µ (σ + 2π) = X µ (σ).<br />

Can<strong>on</strong>ical formalism. Momentum<br />

We see that<br />

∫ π<br />

0<br />

dσL<br />

∂ τδX µ + δL )<br />

δẊµ δX ∂ σδX µ<br />

(<br />

′µ δL δL<br />

∂ τ<br />

)<br />

+ ∂<br />

δẊµ<br />

σ<br />

δX ′µ<br />

∫ τ2<br />

τ 1<br />

(3.5)<br />

(3.6)<br />

δL<br />

δX ′µ δXµ | σ=π<br />

σ=0 (3.7)<br />

δL<br />

(τ, σ = π) = δL (τ, σ = 0) = 0<br />

δX ′µ δX ′µ<br />

P µ = δL = −T (ẊX′ )X ′µ − (X ′ ) 2 Ẋ µ<br />

√<br />

δẊµ (ẊX′ ) 2 − Ẋ2 X ′2<br />

P µ X ′ µ = 0 (3.8)<br />

P µ P µ + T 2 X ′2 = 0 (3.9)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!