27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– 28 –<br />

It follows from the Schwarz inequality that<br />

(α ∗ n α m)(α ∗ m α n) = |(α ∗ n α m)| 2 ≤ (α ∗ n α n)(α ∗ m α m) ≤ nm(α ∗ n α n)(α ∗ m α m) .<br />

Therefore,<br />

∞X<br />

J 2 ≤<br />

n,m=1(α ∗ n α n)(α ∗ m α m) = 1 ∞X<br />

X ∞ 1<br />

α n α −n α m α −m =<br />

4<br />

n=−∞<br />

m=−∞<br />

(2πT ) 2 M 4<br />

because in the open string case<br />

∞X<br />

M 2 = πT α n α −n = 2πT X α n α −n .<br />

n=−∞ n>0<br />

Thus, for an open string moti<strong>on</strong> we found inequality<br />

J ≡<br />

pJ 2 ≤ 1<br />

2πT M 2 .<br />

Here the parameter<br />

α ′ = 1<br />

2πT<br />

is called a slope of the Regge trajectory. The functi<strong>on</strong> J = α ′ M 2 is a straight line in the (M 2 , J) plane whose slope is α ′ .<br />

C<strong>on</strong>sider a closed (pulsating) string soluti<strong>on</strong><br />

x = R cos σ cos τ , y = R sin σ cos τ , t = Rτ .<br />

We see that<br />

P 0 = 2πRT =⇒ T = P 0<br />

2πR ≡<br />

i.e. tensi<strong>on</strong> is energy per unit length.<br />

3.4 <strong>String</strong>s in physical gauge<br />

E<br />

2πR ,<br />

As we have seen up<strong>on</strong> fixing c<strong>on</strong>formal gauge we are still left with the gauge freedom.<br />

It corresp<strong>on</strong>ds to reparametrizati<strong>on</strong>s of the special type (soluti<strong>on</strong>s to the c<strong>on</strong>formal<br />

Killing equati<strong>on</strong>):<br />

σ + → ξ + (σ + ) , σ − → ξ − (σ − ) ,<br />

where ξ ± are two arbitrary functi<strong>on</strong>s (periodic in σ). This freedom can be further<br />

fixed leaving <strong>on</strong>ly physical excitati<strong>on</strong>s. This is achieved by imposing the so-called<br />

light-c<strong>on</strong>e gauge.<br />

3.4.1 First order formalism<br />

Introduce the light-c<strong>on</strong>e coordinates in the d-dimensi<strong>on</strong>al Minkowski space<br />

X ± = 1 √<br />

2<br />

(X 0 ± X d−1 ), X i , i = 1, . . . , d − 2 .<br />

C<strong>on</strong>sider the Polyakov acti<strong>on</strong> and introduce the light-c<strong>on</strong>e momenta c<strong>on</strong>jugate to<br />

the light-c<strong>on</strong>e coordinates<br />

P ± =<br />

∂L<br />

∂Ẋ± ,<br />

P i = ∂L<br />

∂Ẋi (3.56)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!