27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

– 55 –<br />

Recall that for tachy<strong>on</strong>s <strong>on</strong> shell we have ki 2 = 1 . Performing now the Wick rotati<strong>on</strong><br />

α ′<br />

τ → −iτ and changing the integrati<strong>on</strong> variable τ for x = e −τ we find<br />

A =<br />

∫ 1<br />

0<br />

dx x 2α′ k 3 k 4<br />

(1 − x) 2α′ k 2 k 3<br />

,<br />

where for the sake of simplicity we omitted the δ-functi<strong>on</strong> which encodes the c<strong>on</strong>servati<strong>on</strong><br />

law of the momenta. Introducing the Mandelstam variables s = (k 1 + k 2 ) 2<br />

and t = (k 2 + k 3 ) 2 the last formula can be cast in the form<br />

A =<br />

∫ 1<br />

0<br />

dx x α′ s−2 (1 − x) α′ t−2 = Γ(α′ s − 1)Γ(α ′ t − 1)<br />

Γ(α ′ (s + t) − 2)<br />

In fact this functi<strong>on</strong> is known as the Euler beta-functi<strong>on</strong>. One of the interesting<br />

properties of the representati<strong>on</strong> of A in terms of the Euler beta-functi<strong>on</strong> is that the<br />

latter is explicitly symmetric under the interchange of s and t. Search of amplitudes<br />

with this symmetry property led Veneziano in 1960’s to this amplitude which was<br />

the starting point of modern string theory.<br />

It is interesting to analyze the Veneziano formula in more detail. The Γ-functi<strong>on</strong> has<br />

poles at n<strong>on</strong>-positive integers with residues<br />

Γ(x) → (−1)n<br />

n!<br />

1<br />

x + n<br />

as x → −n , n ≥ 0 .<br />

Thus, when α ′ s → 1 − n, n = 0, 1, . . . the amplitude behaves as<br />

A(s, t) → (−1)n<br />

n!<br />

1 Γ(α ′ t − 1)<br />

α ′ s − 1 + n Γ(α ′ t − 1 − n)<br />

Here the dependents of the variable t is polynomial because for n > 0 we have<br />

Γ(α ′ t − 1) Γ(w + n)<br />

Γ(α ′ = = (w + n − 1) · · · (w + 1)w<br />

}<br />

t −<br />

{{<br />

1 − n<br />

}<br />

) Γ(w)<br />

w<br />

= (α ′ t − 2)(α ′ t − 3) · · · (α ′ t − n − 1) ≡ P n (α ′ t) ,<br />

i.e. the r.h.s. is a polynomial of degree n. Thus, the scattering amplitude can be<br />

essentially written as<br />

∞∑ (−1) n P n (α ′ t)<br />

A(s, t) =<br />

n! n − 1 + α ′ s , P 0(α t) = 1 .<br />

n=0<br />

In scattering theory res<strong>on</strong>ances (or simply poles) of the scattering amplitude are<br />

interpreted as an exchange by intermediate particles whose masses are obtained from<br />

the c<strong>on</strong>diti<strong>on</strong> of having poles. In our case we see that the poles arise due to exchange<br />

by hypothetical particles whose masses are quantized as<br />

Mn 2 = −s = 1 (n − 1) .<br />

α<br />

′<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!