27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– 59 –<br />

4.2.1 Lorentz symmetry and critical dimensi<strong>on</strong><br />

Studying the classical string in the light-c<strong>on</strong>e gauge we realized that the generators<br />

J i− of the Lorentz symmetry become rather complicated functi<strong>on</strong>s of transversal<br />

oscillators<br />

J i− = x i p − − x − p i − i<br />

∞∑<br />

n=1<br />

1 ( ∑ ∞<br />

α<br />

i<br />

n −n αn − − α−nαn) − i 1 (ᾱi )<br />

− i<br />

n −n ᾱn − − ᾱ−nᾱ − n<br />

i .<br />

n=1<br />

We would like to ask a questi<strong>on</strong> whether we can use this expressi<strong>on</strong> in quantum<br />

theory regarding α n and ᾱ n as operators to define the quantum Lorentz generators?<br />

Due to the unusual can<strong>on</strong>ical structure of the light-c<strong>on</strong>e theory it is not obvious that<br />

c<strong>on</strong>sistent Lorentz generators should exist.<br />

In quantum theory we want to realize a unitary representati<strong>on</strong> of the Poincaré<br />

group and therefore, we require the Lorentz generators to be hermitian, i.e.<br />

(J µν ) † = J µν ,<br />

where we treat J µν as an operator acting in the Hilbert space. Also the Lorentz<br />

generators must be normal-ordered to have the well-defined acti<strong>on</strong> <strong>on</strong> the vacuum<br />

state. C<strong>on</strong>sider the following ansatz for the Lorentz generators J i− , which are the<br />

most intricate generators to be defined in quantum theory,<br />

J i− = 1 ∞∑<br />

2 (xi p − + p − x i ) − x − p i −i<br />

} {{ } n=1<br />

l i−<br />

1 ( ∑ ∞<br />

α<br />

i<br />

n −n αn − − α−nαn) − i − i<br />

n=1<br />

1 (ᾱi )<br />

n −n ᾱn − − ᾱ−nᾱ − n<br />

i .<br />

One can see that these generators are hermitian and normal-ordered so they can<br />

be c<strong>on</strong>sidered as candidates to realize the Lorentz algebra symmetry. The latter<br />

requirement is equivalent to<br />

[J i− , J j− ] = 0 .<br />

This is an equati<strong>on</strong> we would like to prove.<br />

First we discuss the orbital part. We have<br />

[l i− , l j− ] = [ 1 2 (xi p − + p − x i ) − x − p i , 1 2 (xj p − + p − x j ) − x − p j ]<br />

= 1 4 [xi p − , x j p − ] → i 4 (xj p i − x i p j ) p−<br />

p +<br />

+ 1 4 [xi p − , p − x j ] → i 4 (pi x j − x i p j ) p−<br />

p +<br />

−<br />

1 2 [xi p − , x − p j ] → − i 2 (x− p − δ ij − x i p j p−<br />

p + )<br />

+ 1 4 [p− x i , x j p − ] → −<br />

4<br />

i p −<br />

p + (pj x i − x j p i )<br />

+<br />

4 1 [p− x i , x − p j ] → −<br />

4<br />

i p −<br />

p + (pj x i − p i x j )<br />

−<br />

−<br />

−<br />

1 2 [p− x i , x − p j ] → i 2 ( p−<br />

p + pj x i − p − x − δ ij )<br />

1<br />

2 [x− p i , x j p − ] → − i 2 (xj p i p−<br />

p + − x− p − δ ij )<br />

1<br />

2 [x− p i , p − x j ] → − i 2 ( p−<br />

p + xj p i − x − p − δ ij ) .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!