27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

– 60 –<br />

Here by arrow we indicated the explicit expressi<strong>on</strong> for the corresp<strong>on</strong>ding commutator. Reducing similar terms we get<br />

[l i− , l j− ] =<br />

4 i [pi , x j ] p−<br />

p + + 4<br />

i p −<br />

p + [pi , x j ] +<br />

2 i [x− , p − ]δ ij = 0 .<br />

Thus, the generators of the orbital part of the total momentum have vanishing commutator. Next we compute<br />

[l i− , S j− ] + [S i− , l j− ] = −2 p− X ∞ 1<br />

p +<br />

n=1 n α[i −n αj] n + (4.15)<br />

+ 1<br />

p +<br />

∞ X<br />

1<br />

n=1 n<br />

h<br />

− (α j −n α− n − α− −n αj n )pi + (α i −n α− n − α− −n αi n )pj i .<br />

Here and below we use the c<strong>on</strong>cise notati<strong>on</strong> α [i −n αj] n = α i −n αj n − αj −n αi n .<br />

Now we are in a positi<strong>on</strong> to study the most difficult commutator [S i− , S j− ]. We will do further analysis in several steps.<br />

1. First we c<strong>on</strong>sider the following commutator<br />

Therefore,<br />

This further gives<br />

[S i− , α − ∞ m ] = −i X 1<br />

n n [αi −n α− n − α− −n αi n , α− m ] (4.16)<br />

√ √<br />

∞X 1 4πT<br />

= −i −<br />

n=1 n p + nαi m−n α− n + αi −n [α− n , α− m ] −[α − 4πT<br />

<br />

−n , α− m ]αi n − p + nα− −n αi n+m .<br />

| {z }<br />

A<br />

[S i− , α − m ] = −i √<br />

4πT<br />

p +<br />

− i f(m)<br />

m αi m .<br />

X ∞ 1 <br />

− nα i <br />

m−n<br />

n=1 n<br />

α− n + αi −n (n − m)α− m+n + (n + m)α− m−n αi n − nα− −n αi n+m<br />

[S i− , α − m ] = −i √<br />

4πT<br />

+ i<br />

p +<br />

√<br />

4πT<br />

p +<br />

X ∞ <br />

α i −n α− m+n − αi m−n α− n + α − m−n αi n −α − <br />

−n αi n+m<br />

n=1<br />

| {z } | {z }<br />

A<br />

B<br />

X ∞ m<br />

n=1 n<br />

<br />

α i <br />

−n α− m+n − α− m−n αi n − i f(m)<br />

m αi m .<br />

The terms in the first line of the last equati<strong>on</strong> can be partially cancelled up<strong>on</strong> changing the summati<strong>on</strong> index and we find<br />

that<br />

[S i− , α − m ] = −i √<br />

4πT<br />

+ i<br />

p +<br />

√<br />

4πT<br />

p +<br />

m X<br />

n=1<br />

X ∞ m<br />

n=1 n<br />

<br />

− α i m−n α− n<br />

| {z }<br />

A<br />

+ α − m−n αi n<br />

| {z }<br />

B<br />

<br />

α i <br />

−n α− m+n − α− m−n αi n − i f(m)<br />

m αi m .<br />

<br />

Since we have<br />

mX<br />

α − m−n αi n =<br />

X 0 α − m−1<br />

k αi m−k ≡ X<br />

α − n αi m−n<br />

n=1<br />

k=m−1<br />

n=0<br />

we see that<br />

mX <br />

− α i mX<br />

m−n α− n + α− m−n αi n = − α i m−1<br />

m−n α− n + X<br />

α − n αi m−n<br />

n=1<br />

n=1<br />

n=0<br />

= α − m−1<br />

0 αi n − αi 0 α− m + X<br />

[α − n , αi m−n ]<br />

n=1<br />

Using the fact that P m−1<br />

n=1 (m − n) = 1 m(m − 1) we obtain<br />

2<br />

√ √<br />

[S i− , α − 4πT<br />

4πT<br />

m ] = i p + (αi 0 α− m − α− 0 αi m ) + i X ∞ m <br />

p +<br />

α i <br />

−n<br />

n=1 n<br />

α− m+n − α− m−n αi n<br />

4πT m(m − 1)<br />

+ i<br />

(p + ) 2 − f(m)<br />

!<br />

α i m<br />

2<br />

m<br />

. (4.17)<br />

Thus, under the acti<strong>on</strong> of the Virasoro operators α − m the spin comp<strong>on</strong>ents Si− transform in a n<strong>on</strong>trivial manner. Note that<br />

the r.h.s. of eq.(4.17) is normal-ordered.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!