27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

– 61 –<br />

2. Analogously, we compute (m > 0)<br />

√ √<br />

[S i− , α − 4πT<br />

4πT<br />

−m ] = i p + (α− −m αi 0 − αi −m α− 0 ) − i X ∞ m <br />

p +<br />

α i <br />

−n<br />

n=1 n<br />

α− n−m − α− −m−n αi n<br />

4πT m(m − 1)<br />

+ i<br />

(p + ) 2 − f(m)<br />

!<br />

α i −m<br />

2<br />

m<br />

.<br />

In fact these formula is also obtained from eq.(4.17) by simply substituting m → −m.<br />

3. The next step c<strong>on</strong>sists in finding the commutator<br />

[S i− , α j −m ] = −i ∞ X<br />

= −i<br />

1 <br />

n=1 n<br />

√<br />

4πT<br />

p +<br />

α i −n [α− n , αj −m ] − [α− −n , αj −m ]αi n − α− −n δij δ n−m<br />

| {z }<br />

0 as i≠j<br />

X ∞ m<br />

n=1 n<br />

<br />

α i <br />

−n αj n−m − αj −n−m αi n .<br />

<br />

4. Finally we compute the commutator<br />

[S i− , α j m ] = i √<br />

4πT<br />

p +<br />

X ∞ m<br />

n=1 n<br />

<br />

α i <br />

−n αj m+n − αj m−n αi n .<br />

Substituting all our findings into the commutator [S i− , S j− ] we obtain<br />

[S i− , S j− ] =<br />

√<br />

4πT<br />

p +<br />

∞ X<br />

1<br />

n=1 n<br />

∞X<br />

−<br />

n=1<br />

√<br />

4πT X ∞ 1<br />

+<br />

p +<br />

m,n=1 n<br />

<br />

− α j <br />

−n α− 0 αi n + αj −n αi 0 α− n + αi −n α− 0 αj n − α− −n αi 0 αj n<br />

4πT n − 1<br />

(p + ) 2 − f(n)<br />

!<br />

2 n 2 α [i −n αj] n<br />

<br />

α j −m (αi −n α− m+n − α− m−n αi n ) − (αi −n αj n−m − αj −m−n αi n )α− m<br />

+ (α i −n α− n−m − α− −n−m αi n )αj m − α− −m (αi −n αj m+n − αj m−n αi n ) <br />

.<br />

We first analyze the last two lines of the equati<strong>on</strong> above, which we write as follows<br />

I ij =<br />

√<br />

4πT X ∞ 1 <br />

p +<br />

α j −m<br />

m,n=1 n<br />

αi −n α− m+n −(α i −n αj n−m<br />

−α j −m−n αi n )α− m<br />

| {z } | {z }<br />

A<br />

A<br />

+ α i −n α− n−m αj m − αj −m α− m−n αi n − α− −n−m αi n αj m −α − −m (αi −n αj m+n<br />

| {z } | {z }<br />

B<br />

B<br />

−α j m−n αi n ) <br />

.<br />

Up<strong>on</strong> changing the summati<strong>on</strong> variables the A-terms can be partially cancelled, the same is for the B-terms. We therefore obtain<br />

I ij =<br />

+<br />

√<br />

4πT X ∞ nX 1<br />

n<br />

p + −<br />

n=1 m=1 n αi −n αj n−m α− m +<br />

X 1<br />

<br />

m=1 n α− −m αj m−n αi n<br />

√<br />

4πT X ∞ <br />

p +<br />

α j <br />

−m−n αi n α− m + αi −n α− n−m αj m − αj −m α− m−n αi n − α− −m αi −n αj m+n<br />

.<br />

n,m=1<br />

One can recognize that in the sec<strong>on</strong>d line of the equati<strong>on</strong> above the first and the last terms are not normal-ordered. We c<strong>on</strong>sider the<br />

first sum, which is not normal-ordered, and try to bring it to the normal-ordered form:<br />

∞X 1<br />

∞<br />

n,m=1 n αj −m−n αi n α− m = X 1<br />

∞<br />

n,m=1 n αj −m−n α− m αi n +<br />

X 1<br />

n,m=1 n αj −m−n [αi n , α− m ]<br />

√<br />

∞X 1<br />

4πT<br />

=<br />

n,m=1 n αj −m−n α− m αi n + X ∞<br />

p +<br />

α j −m−n αi n+m<br />

n,m=1<br />

√<br />

∞X 1<br />

4πT<br />

=<br />

n,m=1 n αj −m−n α− m αi n + X ∞<br />

p + (k − 1)α j −k αi k ,<br />

k=2<br />

where in the last sum we made a substituti<strong>on</strong> k = m + n and then summed over m, n with the c<strong>on</strong>diti<strong>on</strong> m + n = k kept fixed; this<br />

resulted in the factor k − 1. Analogously, we achieve the normal-ordering of the sec<strong>on</strong>d sum<br />

∞X 1<br />

∞ √<br />

n,m=1 n α− −m αi −n αj m+n =<br />

X 1<br />

4πT<br />

n,m=1 n αi −n α− −m αj m+n + X ∞<br />

p + (k − 1)α i −k αj k .<br />

k=2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!