27.07.2014 Views

Lectures on String Theory

Lectures on String Theory

Lectures on String Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– 20 –<br />

which result into<br />

We see that we have two c<strong>on</strong>straints<br />

We find the following Poiss<strong>on</strong> brackets<br />

Ẍ µ − X ′′µ = □X µ = 0<br />

C 1 = P µ P µ + T 2 X ′ µX ′µ , C 2 = P µ X ′µ (3.25)<br />

{C 1 (σ), C 1 (σ ′ )} = 4T 2 ∂ σ C 2 (σ)δ(σ − σ ′ ) + 8T 2 C 2 (σ)∂ σ δ(σ − σ ′ ) , (3.26)<br />

{C 1 (σ), C 2 (σ ′ )} = ∂ σ C 1 (σ)δ(σ − σ ′ ) + 2C 1 (σ)∂ σ δ(σ − σ ′ ) , (3.27)<br />

{C 2 (σ), C 1 (σ ′ )} = ∂ σ C 1 (σ)δ(σ − σ ′ ) + 2C 1 (σ)∂ σ δ(σ − σ ′ ) , (3.28)<br />

{C 2 (σ), C 2 (σ ′ )} = ∂ σ C 2 (σ)δ(σ − σ ′ ) + 2C 2 (σ)∂ σ δ(σ − σ ′ ) . (3.29)<br />

Instead of the c<strong>on</strong>straints C 1 and C 2 we can equally c<strong>on</strong>sider their linear combinati<strong>on</strong>s<br />

Their Poiss<strong>on</strong> algebra becomes<br />

T ++ = 1<br />

8T 2 (C 1 + 2T C 2 ) = 1<br />

8T 2 (P µ + T X ′ µ) 2 , (3.30)<br />

T −− = 1<br />

8T 2 (C 1 − 2T C 2 ) = 1<br />

8T 2 (P µ − T X ′ µ) 2 . (3.31)<br />

{T ++ (σ), T ++ (σ ′ )} = 1 (<br />

)<br />

∂ σ T ++ (σ)δ(σ − σ ′ ) + 2T ++ (σ)∂ σ δ(σ − σ ′ ) ,<br />

2T<br />

{T −− (σ), T −− (σ ′ )} = − 1 (<br />

)<br />

∂ σ T −− (σ)δ(σ − σ ′ ) + 2T −− (σ)∂ σ δ(σ − σ ′ ) ,<br />

2T<br />

{T ++ (σ), T −− (σ ′ )} = 0 . (3.32)<br />

C<strong>on</strong>straints T ++ and T −− Poiss<strong>on</strong> commute and form two independent Poiss<strong>on</strong> algebras!<br />

Now <strong>on</strong>e can easily find the evoluti<strong>on</strong> equati<strong>on</strong>s for T ++ and T −− . We have<br />

∂ τ T ++ = {T ++ (σ), H} = ∂ σ T ++ =⇒ (∂ τ − ∂ σ )T ++ = ∂ − T ++ = 0 ,<br />

∂ τ T −− = {T −− (σ), H} = −∂ σ T −− =⇒ (∂ τ + ∂ σ )T −− = ∂ + T −− = 0 ,<br />

Thus, we see that evoluti<strong>on</strong> equati<strong>on</strong>s imply that<br />

The Hamilt<strong>on</strong>ian itself is<br />

T ++ = T ++ (σ + ) , T −− = T −− (σ − ) . (3.33)<br />

H = 2T<br />

∫ 2π<br />

0<br />

dσ(T ++ + T −− ) ,<br />

i.e. it is a sum of zero modes of the left- and right-moving c<strong>on</strong>straints.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!