15.08.2015 Views

Introduction to the Modeling and Analysis of Complex Systems

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

160 CHAPTER 9. CHAOSreturn log(abs(1 - 2*x))def lyapunov_exponent():initialize()for t in xrange(100):update()observe()return mean(result)rvalues = arange(0, 2, 0.01)lambdas = [lyapunov_exponent() for r in rvalues]plot(rvalues, lambdas)plot([0, 2], [0, 0])xlabel(’r’)ylabel(’Lyapunov exponent’)show()Figure 9.6 shows <strong>the</strong> result. By comparing this figure with <strong>the</strong> bifurcation diagram (Fig. 8.10),you will notice that <strong>the</strong> parameter range where <strong>the</strong> Lyapunov exponent takes positive valuesnicely matches <strong>the</strong> range where <strong>the</strong> system shows chaotic behavior. Also, whenevera bifurcation occurs (e.g., r = 1, 1.5, etc.), <strong>the</strong> Lyapunov exponent <strong>to</strong>uches <strong>the</strong> λ = 0 line,indicating <strong>the</strong> criticality <strong>of</strong> those parameter values. Finally, <strong>the</strong>re are several locations in<strong>the</strong> plot where <strong>the</strong> Lyapunov exponent diverges <strong>to</strong> negative infinity (<strong>the</strong>y may not look so,but <strong>the</strong>y are indeed going infinitely deep). Such values occur when <strong>the</strong> system converges<strong>to</strong> an extremely stable equilibrium point with dF t /dx| x=x0 ≈ 0 for certain t. Since <strong>the</strong> definition<strong>of</strong> <strong>the</strong> Lyapunov exponent contains logarithms <strong>of</strong> this derivative, if it becomes zero,<strong>the</strong> exponent diverges <strong>to</strong> negative infinity as well.Exercise 9.3 Plot <strong>the</strong> Lyapunov exponent <strong>of</strong> <strong>the</strong> logistic map (Eq. (8.42)) for 0 0:x t = cos 2 (rx t−1 ) (9.8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!