15.08.2015 Views

Introduction to the Modeling and Analysis of Complex Systems

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

282 CHAPTER 14. CONTINUOUS FIELD MODELS II: ANALYSIS∣ −µω2 − λ χa eq ω 2f −Dω 2 − k − λ ∣ = 0 (14.66)(−µω 2 − λ)(−Dω 2 − k − λ) − χa eq ω 2 f = 0 (14.67)λ 2 + (µω 2 + Dω 2 + k)λ + µω 2 (Dω 2 + k) − χa eq ω 2 f = 0 (14.68)λ = 1 (−(µω 2 + Dω 2 + k) ±√(µω22 + Dω 2 + k) 2 − 4 ( µω 2 (Dω 2 + k) − χa eq ω 2 f ))(14.69)Now, <strong>the</strong> question is whe<strong>the</strong>r ei<strong>the</strong>r eigenvalue’s real part could be positive. Since all <strong>the</strong>parameters are non-negative in this model, <strong>the</strong> term before “±” can’t be positive by itself.This means that <strong>the</strong> inside <strong>the</strong> radical must be positive <strong>and</strong> sufficiently large in order <strong>to</strong>make <strong>the</strong> real part <strong>of</strong> <strong>the</strong> eigenvalue positive. Therefore, <strong>the</strong> condition for a positive realpart <strong>to</strong> arise is as follows:√(µω 2 + Dω 2 + k) < (µω 2 + Dω 2 + k) 2 − 4 ( µω 2 (Dω 2 + k) − χa eq ω 2 f ) (14.70)If this is <strong>the</strong> case, <strong>the</strong> first eigenvalue (with <strong>the</strong> “+” opera<strong>to</strong>r in <strong>the</strong> paren<strong>the</strong>ses) is real<strong>and</strong> positive, indicating that <strong>the</strong> homogeneous equilibrium state is unstable. Let’s simplify<strong>the</strong> inequality above <strong>to</strong> get a more human-readable result:(µω 2 + Dω 2 + k) 2 < (µω 2 + Dω 2 + k) 2 − 4 ( µω 2 (Dω 2 + k) − χa eq ω 2 f ) (14.71)0 < −4 ( µω 2 (Dω 2 + k) − χa eq ω 2 f ) (14.72)χa eq ω 2 f > µω 2 (Dω 2 + k) (14.73)χa eq f > µ(Dω 2 + k) (14.74)At last, we have obtained an elegant inequality that ties all <strong>the</strong> model parameters <strong>to</strong>ge<strong>the</strong>rin a very concise ma<strong>the</strong>matical expression. If this inequality is true, <strong>the</strong> homogeneousequilibrium state <strong>of</strong> <strong>the</strong> Keller-Segel model is unstable, so it is expected that <strong>the</strong> systemwill show a spontaneous pattern formation. One <strong>of</strong> <strong>the</strong> benefits <strong>of</strong> this kind <strong>of</strong> ma<strong>the</strong>maticalanalysis is that we can learn a lot about each model parameter’s effect on patternformation all at once. From inequality (14.74), for example, we can make <strong>the</strong> following predictionsabout <strong>the</strong> aggregation process <strong>of</strong> slime mold cells (<strong>and</strong> people <strong>to</strong>o, if we considerthis a model <strong>of</strong> population-economy interaction):• χ, a eq , <strong>and</strong> f on <strong>the</strong> left h<strong>and</strong> side indicate that <strong>the</strong> aggregation <strong>of</strong> cells (or <strong>the</strong>concentration <strong>of</strong> population in major cities) is more likely <strong>to</strong> occur if

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!