15.08.2015 Views

Introduction to the Modeling and Analysis of Complex Systems

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

286 CHAPTER 14. CONTINUOUS FIELD MODELS II: ANALYSIS<strong>the</strong> Jacobian matrices, <strong>and</strong> <strong>the</strong> stability analysis is just calculating a Jacobian matrix <strong>and</strong><strong>the</strong>n investigating its eigenvalues. Everything is so mechanistic <strong>and</strong> au<strong>to</strong>matic, compared<strong>to</strong> what we went through in <strong>the</strong> previous section. You may wonder, aren’t <strong>the</strong>re any easiershortcuts in analyzing <strong>the</strong> stability <strong>of</strong> continuous field models?Well, if you feel that way, you will become a big fan <strong>of</strong> <strong>the</strong> reaction-diffusion systems wediscussed in Section 13.6. Their linear stability analysis is much easier, because <strong>of</strong> <strong>the</strong>clear separation <strong>of</strong> local reaction dynamics <strong>and</strong> spatial diffusion dynamics. To be morespecific, you can bring <strong>the</strong> Jacobian matrix back <strong>to</strong> <strong>the</strong> analysis! Here is how <strong>and</strong> why itworks.Consider conducting a linear stability analysis <strong>to</strong> <strong>the</strong> following st<strong>and</strong>ard reaction-diffusionsystem:∂f 1∂t = R 1(f 1 , f 2 , . . . , f n ) + D 1 ∇ 2 f 1 (14.80)∂f 2∂t = R 2(f 1 , f 2 , . . . , f n ) + D 2 ∇ 2 f 2 (14.81).∂f n∂t = R n(f 1 , f 2 , . . . , f n ) + D n ∇ 2 f n (14.82)The homogeneous equilibrium state <strong>of</strong> this system, (f 1eq , f 2eq , . . . , f neq ), is a solution <strong>of</strong><strong>the</strong> following equations:0 = R 1 (f 1eq , f 2eq , . . . , f neq ) (14.83)0 = R 2 (f 1eq , f 2eq , . . . , f neq ) (14.84).0 = R n (f 1eq , f 2eq , . . . , f neq ) (14.85)To conduct a linear stability analysis, we replace <strong>the</strong> original state variables as follows:f i (x, t) ⇒ f ieq + ∆f i (x, t) = f ieq + sin(ωx + φ)∆f i (t) for all i (14.86)This replacement turns <strong>the</strong> dynamical equations in<strong>to</strong> <strong>the</strong> following form:S ∂∆f 1∂tS ∂∆f 2∂t= R 1 (f 1eq + S∆f 1 , f 2eq + S∆f 2 , . . . , f neq + S∆f n ) − D 1 ω 2 S∆f 1 (14.87)= R 2 (f 1eq + S∆f 1 , f 2eq + S∆f 2 , . . . , f neq + S∆f n ) − D 2 ω 2 S∆f 2 (14.88)S ∂∆f n∂t.= R n (f 1eq + S∆f 1 , f 2eq + S∆f 2 , . . . , f neq + S∆f n ) − D n ω 2 S∆f n (14.89)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!