15.08.2015 Views

Introduction to the Modeling and Analysis of Complex Systems

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

introduction-to-the-modeling-and-analysis-of-complex-systems-sayama-pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

13.2. FUNDAMENTALS OF VECTOR CALCULUS 233Actually, Fig. 13.4 may be a bit misleading; <strong>the</strong> particles can go in <strong>and</strong> out through anyedge in both directions. But we use <strong>the</strong> + sign for v x (x − h, y) <strong>and</strong> v y (x, y − h) <strong>and</strong> <strong>the</strong> −sign for v x (x + h, y) <strong>and</strong> v y (x, y + h) in Eq. (13.6), because <strong>the</strong> velocities are measuredusing <strong>the</strong> coordinate system where <strong>the</strong> rightward <strong>and</strong> upward directions are consideredpositive.Since N depends on <strong>the</strong> size <strong>of</strong> <strong>the</strong> area, we can divide it by <strong>the</strong> area ((2h) 2 in thiscase) <strong>to</strong> calculate <strong>the</strong> change in terms <strong>of</strong> <strong>the</strong> concentration <strong>of</strong> <strong>the</strong> particles, c = N/(2h) 2 ,which won’t depend on h:∂c∂t = 2hv x(x − h, y) + 2hv y (x, y − h) − 2hv x (x + h, y) − 2hv y (x, y + h)(2h) 2 (13.7)= v x(x − h, y) + v y (x, y − h) − v x (x + h, y) − v y (x, y + h)2hIf we make <strong>the</strong> size <strong>of</strong> <strong>the</strong> area really small (h → 0), this becomes <strong>the</strong> following:∂c∂t = lim v x (x − h, y) + v y (x, y − h) − v x (x + h, y) − v y (x, y + h)h→02h){(= lim − v x(x + h, y) − v x (x − h, y)h→0 2h= − ∂v x∂x − ∂v y∂y+(− v y(x, y + h) − v y (x, y − h)2h(13.8)(13.9))}(13.10)(13.11)= −∇ · v (13.12)In natural words, this means that <strong>the</strong> temporal change <strong>of</strong> a concentration <strong>of</strong> <strong>the</strong> stuffis given by a negative divergence <strong>of</strong> <strong>the</strong> vec<strong>to</strong>r field v that describes its movement. If<strong>the</strong> divergence is positive, that means that <strong>the</strong> stuff is escaping from <strong>the</strong> local area. If <strong>the</strong>divergence is negative, <strong>the</strong> stuff is flowing in<strong>to</strong> <strong>the</strong> local area. The ma<strong>the</strong>matical derivationabove confirms this intuitive underst<strong>and</strong>ing <strong>of</strong> divergence.Exercise 13.13-D cases.Confirm that <strong>the</strong> interpretation <strong>of</strong> divergence above also applies <strong>to</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!