06.09.2021 Views

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.2. LU Factorization 103<br />

For a simple illustration of the last claim,<br />

⎡<br />

1 0 0 1 0<br />

⎤<br />

0<br />

⎡<br />

⎣ 0 1 0 0 1 0 ⎦ → ⎣<br />

0 a 1 0 0 1<br />

Now let A be an m × n matrix, say<br />

⎡<br />

A = ⎢<br />

⎣<br />

1 0 0 1 0 0<br />

0 1 0 0 1 0<br />

0 0 1 0 −a 1<br />

⎤<br />

a 11 a 12 ··· a 1n<br />

a 21 a 22 ··· a 2n<br />

⎥<br />

. . . ⎦<br />

a m1 a m2 ··· a mn<br />

and assume A can be row reduced to an upper triangular form us<strong>in</strong>g only row operation 3. Thus, <strong>in</strong><br />

particular, a 11 ≠ 0. Multiply on the left by E 1 =<br />

⎡<br />

⎤<br />

1 0 ··· 0<br />

− a 21<br />

a 11<br />

1 ··· 0<br />

⎢<br />

⎣<br />

.<br />

. . ..<br />

⎥ . ⎦<br />

− a m1<br />

a 11<br />

0 ··· 1<br />

This is the product of elementary matrices which make modifications <strong>in</strong> the first column only. It is equivalent<br />

to tak<strong>in</strong>g −a 21 /a 11 times the first row and add<strong>in</strong>g to the second. Then tak<strong>in</strong>g −a 31 /a 11 times the<br />

first row and add<strong>in</strong>g to the third and so forth. The quotients <strong>in</strong> the first column of the above matrix are the<br />

multipliers. Thus the result is of the form<br />

⎡<br />

E 1 A = ⎢<br />

⎣<br />

a 11 a 12 ··· a ′ 1n<br />

0 a ′ 22<br />

··· a ′ 2n<br />

. . .<br />

0 a ′ m2<br />

··· a ′ mn<br />

By assumption, a ′ 22 ≠ 0 and so it is possible to use this entry<br />

[<br />

to zero<br />

]<br />

out all the entries below it <strong>in</strong> the matrix<br />

1 0<br />

on the right by multiplication by a matrix of the form E 2 = where E is an [m − 1]×[m − 1] matrix<br />

0 E<br />

of the form<br />

⎡<br />

⎤<br />

1 0 ··· 0<br />

− a′ 32<br />

a<br />

E =<br />

′ 1 ··· 0<br />

22<br />

⎢ . ⎣ . . .. .<br />

⎥<br />

⎦<br />

0 ··· 1<br />

− a′ m2<br />

a ′ 22<br />

Aga<strong>in</strong>, the entries <strong>in</strong> the first column below the 1 are the multipliers. Cont<strong>in</strong>u<strong>in</strong>g this way, zero<strong>in</strong>g out the<br />

entries below the diagonal entries, f<strong>in</strong>ally leads to<br />

E m−1 E n−2 ···E 1 A = U<br />

where U is upper triangular. Each E j has all ones down the ma<strong>in</strong> diagonal and is lower triangular. Now<br />

multiply both sides by the <strong>in</strong>verses of the E j <strong>in</strong> the reverse order. This yields<br />

A = E −1<br />

1 E−1 2<br />

···E −1<br />

m−1 U<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!