06.09.2021 Views

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.11. Orthogonality and the Gram Schmidt Process 255<br />

Exercise 4.11.13 Us<strong>in</strong>g the Gram Schmidt process f<strong>in</strong>d an orthonormal basis for the follow<strong>in</strong>g span:<br />

⎧⎡<br />

⎤ ⎡ ⎤ ⎡ ⎤⎫<br />

⎨ 1 2 1 ⎬<br />

span ⎣ 2 ⎦, ⎣ −1 ⎦, ⎣ 0 ⎦<br />

⎩<br />

⎭<br />

1 3 0<br />

Exercise 4.11.14 Us<strong>in</strong>g the Gram Schmidt process f<strong>in</strong>d an orthonormal basis for the follow<strong>in</strong>g span:<br />

⎧⎡<br />

⎤ ⎡ ⎤ ⎡ ⎤⎫<br />

1 2 1<br />

⎪⎨<br />

span ⎢ 2<br />

⎥<br />

⎣ 1 ⎦<br />

⎪⎩<br />

, ⎢ −1<br />

⎥<br />

⎣ 3 ⎦ , ⎢ 0<br />

⎪⎬<br />

⎥<br />

⎣ 0 ⎦<br />

⎪⎭<br />

0 1 1<br />

⎧⎡<br />

⎨<br />

Exercise 4.11.15 The set V = ⎣<br />

⎩<br />

for this subspace.<br />

Exercise 4.11.16 Consider the follow<strong>in</strong>g scalar equation of a plane.<br />

x<br />

y<br />

z<br />

⎤<br />

⎫<br />

⎬<br />

⎦ :2x + 3y − z = 0<br />

⎭ is a subspace of R3 . F<strong>in</strong>d an orthonormal basis<br />

2x − 3y + z = 0<br />

⎡ ⎤<br />

3<br />

F<strong>in</strong>d the orthogonal complement of the vector⃗v = ⎣ 4 ⎦. Also f<strong>in</strong>d the po<strong>in</strong>t on the plane which is closest<br />

1<br />

to (3,4,1).<br />

Exercise 4.11.17 Consider the follow<strong>in</strong>g scalar equation of a plane.<br />

x + 3y + z = 0<br />

⎡ ⎤<br />

1<br />

F<strong>in</strong>d the orthogonal complement of the vector⃗v = ⎣ 2 ⎦. Also f<strong>in</strong>d the po<strong>in</strong>t on the plane which is closest<br />

1<br />

to (3,4,1).<br />

Exercise 4.11.18 Let ⃗v be a vector and let ⃗n be a normal vector for a plane through the orig<strong>in</strong>. F<strong>in</strong>d the<br />

equation of the l<strong>in</strong>e through the po<strong>in</strong>t determ<strong>in</strong>ed by⃗v which has direction vector⃗n. Show that it <strong>in</strong>tersects<br />

the plane at the po<strong>in</strong>t determ<strong>in</strong>ed by⃗v −proj ⃗n ⃗v. H<strong>in</strong>t: The l<strong>in</strong>e:⃗v+t⃗n. It is <strong>in</strong> the plane if⃗n•(⃗v +t⃗n)=0.<br />

Determ<strong>in</strong>e t. Then substitute <strong>in</strong> to the equation of the l<strong>in</strong>e.<br />

Exercise 4.11.19 As shown <strong>in</strong> the above problem, one can f<strong>in</strong>d the closest po<strong>in</strong>t to⃗v <strong>in</strong> a plane through the<br />

orig<strong>in</strong> by f<strong>in</strong>d<strong>in</strong>g the <strong>in</strong>tersection of the l<strong>in</strong>e through⃗v hav<strong>in</strong>g direction vector equal to the normal vector<br />

to the plane with the plane. If the plane does not pass through the orig<strong>in</strong>, this will still work to f<strong>in</strong>d the<br />

po<strong>in</strong>t on the plane closest to the po<strong>in</strong>t determ<strong>in</strong>ed by⃗v. Here is a relation which def<strong>in</strong>es a plane<br />

2x + y + z = 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!