06.09.2021 Views

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.1. L<strong>in</strong>ear Transformations 267<br />

Solution. By Def<strong>in</strong>ition 9.55 we need to show that T (k⃗x 1 + p⃗x 2 )=kT (⃗x 1 )+pT (⃗x 2 ) for all scalars k, p<br />

and vectors⃗x 1 ,⃗x 2 .Let<br />

⎡ ⎤ ⎡ ⎤<br />

x 1 x 2<br />

⃗x 1 = ⎣ y 1<br />

⎦,⃗x 2 = ⎣ y 2<br />

⎦<br />

z 1 z 2<br />

Then<br />

⎛ ⎡ ⎤ ⎡ ⎤⎞<br />

x 1 x 2<br />

T (k⃗x 1 + p⃗x 2 ) = T ⎝k ⎣ y 1<br />

⎦ + p⎣<br />

y 2<br />

⎦⎠<br />

z 1 z 2<br />

⎛⎡<br />

⎤ ⎡ ⎤⎞<br />

kx 1 px 2<br />

= T ⎝⎣<br />

ky 1<br />

⎦ + ⎣ py 2<br />

⎦⎠<br />

kz 1 pz 2<br />

⎛⎡<br />

⎤⎞<br />

kx 1 + px 2<br />

= T ⎝⎣<br />

ky 1 + py 2<br />

⎦⎠<br />

kz 1 + pz 2<br />

[ ]<br />

(kx1 + px<br />

=<br />

2 )+(ky 1 + py 2 )<br />

(kx 1 + px 2 ) − (kz 1 + pz 2 )<br />

[ ]<br />

(kx1 + ky<br />

=<br />

1 )+(px 2 + py 2 )<br />

(kx 1 − kz 1 )+(px 2 − pz 2 )<br />

[ ] [ ]<br />

kx1 + ky<br />

=<br />

1 px2 + py<br />

+<br />

2<br />

kx 1 − kz 1 px 2 − pz 2<br />

[ ] [ ]<br />

x1 + y<br />

= k 1 x2 + y<br />

+ p 2<br />

x 1 − z 1 x 2 − z 2<br />

= kT(⃗x 1 )+pT(⃗x 2 )<br />

Therefore T is a l<strong>in</strong>ear transformation.<br />

♠<br />

Two important examples of l<strong>in</strong>ear transformations are the zero transformation and identity transformation.<br />

The zero transformation def<strong>in</strong>ed by T (⃗x) =⃗0 forall⃗x is an example of a l<strong>in</strong>ear transformation.<br />

Similarly the identity transformation def<strong>in</strong>ed by T (⃗x)=⃗x is also l<strong>in</strong>ear. Take the time to prove these us<strong>in</strong>g<br />

the method demonstrated <strong>in</strong> Example 5.3.<br />

We began this section by discuss<strong>in</strong>g matrix transformations, where multiplication by a matrix transforms<br />

vectors. These matrix transformations are <strong>in</strong> fact l<strong>in</strong>ear transformations.<br />

Theorem 5.4: Matrix Transformations are L<strong>in</strong>ear Transformations<br />

Let T : R n ↦→ R m be a transformation def<strong>in</strong>ed by T (⃗x)=A⃗x. ThenT is a l<strong>in</strong>ear transformation.<br />

It turns out that every l<strong>in</strong>ear transformation can be expressed as a matrix transformation, and thus l<strong>in</strong>ear<br />

transformations are exactly the same as matrix transformations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!