06.09.2021 Views

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

204 R n ⎡<br />

⎢<br />

⎣<br />

1 2 1<br />

1 3 0<br />

1 3 −1<br />

1 2 0<br />

⎤<br />

⎡<br />

⎥<br />

⎦ → ⎢<br />

⎣<br />

1 0 0<br />

0 1 0<br />

0 0 1<br />

0 0 0<br />

Therefore, S can be extended to the follow<strong>in</strong>g basis of U:<br />

⎧⎡<br />

⎤ ⎡ ⎤ ⎡ ⎤⎫<br />

1 2 1<br />

⎪⎨<br />

⎢ 1<br />

⎥<br />

⎣ 1 ⎦<br />

⎪⎩<br />

, ⎢ 3<br />

⎥<br />

⎣ 3 ⎦ , ⎢ 0<br />

⎪⎬<br />

⎥<br />

⎣ −1 ⎦ ,<br />

⎪⎭<br />

1 2 0<br />

Next we consider the case of remov<strong>in</strong>g vectors from a spann<strong>in</strong>g set to result <strong>in</strong> a basis.<br />

⎤<br />

⎥<br />

⎦<br />

♠<br />

Theorem 4.90: F<strong>in</strong>d<strong>in</strong>g a Basis from a Span<br />

Let W be a subspace. Also suppose that W = span{⃗w 1 ,···,⃗w m }. Then there exists a subset of<br />

{⃗w 1 ,···,⃗w m } which is a basis for W.<br />

Proof. Let S denote the set of positive <strong>in</strong>tegers such that for k ∈ S, there exists a subset of {⃗w 1 ,···,⃗w m }<br />

consist<strong>in</strong>g of exactly k vectors which is a spann<strong>in</strong>g set for W. Thus m ∈ S. Pick the smallest positive<br />

<strong>in</strong>teger <strong>in</strong> S. Callitk. Then there exists {⃗u 1 ,···,⃗u k }⊆{⃗w 1 ,···,⃗w m } such that span{⃗u 1 ,···,⃗u k } = W. If<br />

k<br />

∑<br />

i=1<br />

c i ⃗w i =⃗0<br />

and not all of the c i = 0, then you could pick c j ≠ 0, divide by it and solve for ⃗u j <strong>in</strong> terms of the others,<br />

(<br />

⃗w j = ∑ − c )<br />

i<br />

⃗w i<br />

i≠ j<br />

c j<br />

Then you could delete ⃗w j from the list and have the same span. Any l<strong>in</strong>ear comb<strong>in</strong>ation <strong>in</strong>volv<strong>in</strong>g ⃗w j<br />

would equal one <strong>in</strong> which ⃗w j is replaced with the above sum, show<strong>in</strong>g that it could have been obta<strong>in</strong>ed as<br />

a l<strong>in</strong>ear comb<strong>in</strong>ation of ⃗w i for i ≠ j. Thus k − 1 ∈ S contrary to the choice of k . Hence each c i = 0andso<br />

{⃗u 1 ,···,⃗u k } is a basis for W consist<strong>in</strong>g of vectors of {⃗w 1 ,···,⃗w m }.<br />

♠<br />

The follow<strong>in</strong>g example illustrates how to carry out this shr<strong>in</strong>k<strong>in</strong>g process which will obta<strong>in</strong> a subset of<br />

a span of vectors which is l<strong>in</strong>early <strong>in</strong>dependent.<br />

Example 4.91: Subset of a Span<br />

Let W be the subspace<br />

⎧⎡<br />

⎪⎨<br />

span ⎢<br />

⎣<br />

⎪⎩<br />

1<br />

2<br />

−1<br />

1<br />

⎤ ⎡<br />

⎥<br />

⎦ , ⎢<br />

⎣<br />

1<br />

3<br />

−1<br />

1<br />

⎤ ⎡<br />

⎥<br />

⎦ , ⎢<br />

⎣<br />

8<br />

19<br />

−8<br />

8<br />

⎤ ⎡<br />

⎥<br />

⎦ , ⎢<br />

⎣<br />

−6<br />

−15<br />

6<br />

−6<br />

⎤ ⎡<br />

⎥<br />

⎦ , ⎢<br />

⎣<br />

F<strong>in</strong>d a basis for W which consists of a subset of the given vectors.<br />

1<br />

3<br />

0<br />

1<br />

⎤ ⎡<br />

⎥<br />

⎦ , ⎢<br />

⎣<br />

1<br />

5<br />

0<br />

1<br />

⎤⎫<br />

⎪⎬<br />

⎥<br />

⎦<br />

⎪⎭

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!