06.09.2021 Views

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.2. Spherical and Cyl<strong>in</strong>drical Coord<strong>in</strong>ates 445<br />

The follow<strong>in</strong>g picture summarizes the geometric mean<strong>in</strong>g of the three coord<strong>in</strong>ate systems.<br />

z<br />

x<br />

θ<br />

φ<br />

ρ<br />

r<br />

(ρ,φ,θ)<br />

(r,θ,z)<br />

(x,y,z)<br />

(x,y,0)<br />

y<br />

Therefore, we can represent the same po<strong>in</strong>t <strong>in</strong> three ways, us<strong>in</strong>g Cartesian coord<strong>in</strong>ates, (x,y,z), cyl<strong>in</strong>drical<br />

coord<strong>in</strong>ates, (r,θ,z), and spherical coord<strong>in</strong>ates (ρ,φ,θ).<br />

Us<strong>in</strong>g this picture to review, call the po<strong>in</strong>t of <strong>in</strong>terest P for convenience. The Cartesian coord<strong>in</strong>ates for<br />

P are (x,y,z). Thenρ is the distance between the orig<strong>in</strong> and the po<strong>in</strong>t P. The angle between the positive<br />

z axis and the l<strong>in</strong>e between the orig<strong>in</strong> and P is denoted by φ. Then θ is the angle between the positive<br />

x axis and the l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g the orig<strong>in</strong> to the po<strong>in</strong>t (x,y,0) as shown. This gives the spherical coord<strong>in</strong>ates,<br />

(ρ,φ,θ). Given the l<strong>in</strong>e from the orig<strong>in</strong> to (x,y,0), r = ρ s<strong>in</strong>(φ) is the length of this l<strong>in</strong>e. Thus r and<br />

θ determ<strong>in</strong>e a po<strong>in</strong>t <strong>in</strong> the xy-plane. In other words, r and θ are the usual polar coord<strong>in</strong>ates and r ≥ 0<br />

and θ ∈ [0,2π). Lett<strong>in</strong>g z denote the usual z coord<strong>in</strong>ate of a po<strong>in</strong>t <strong>in</strong> three dimensions, (r,θ,z) are the<br />

cyl<strong>in</strong>drical coord<strong>in</strong>ates of P.<br />

The relation between spherical and cyl<strong>in</strong>drical coord<strong>in</strong>ates is that r = ρ s<strong>in</strong>(φ) and the θ is the same<br />

as the θ of cyl<strong>in</strong>drical and polar coord<strong>in</strong>ates.<br />

We will now consider some examples.<br />

Example 8.10: Describ<strong>in</strong>g a Surface <strong>in</strong> Spherical Coord<strong>in</strong>ates<br />

Express the surface z = 1 √<br />

3<br />

√<br />

x 2 + y 2 <strong>in</strong> spherical coord<strong>in</strong>ates.<br />

Solution. We will use the equations from above:<br />

x = ρ s<strong>in</strong>(φ)cos(θ),φ ∈ [0,π]<br />

y = ρ s<strong>in</strong>(φ)s<strong>in</strong>(θ), θ ∈ [0,2π)<br />

z = ρ cosφ, ρ ≥ 0<br />

To express the surface <strong>in</strong> spherical coord<strong>in</strong>ates, we substitute these expressions <strong>in</strong>to the equation. This<br />

is done as follows:<br />

ρ cos(φ)= √ 1 √<br />

(ρ s<strong>in</strong>(φ)cos(θ)) 2 +(ρ s<strong>in</strong>(φ)s<strong>in</strong>(θ)) 2 = 1 3ρ s<strong>in</strong>(φ).<br />

3 3√<br />

This reduces to<br />

tan(φ)= √ 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!