06.09.2021 Views

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

A First Course in Linear Algebra, 2017a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

578 Selected Exercise Answers<br />

Then a solution is<br />

7.4.25<br />

⎡<br />

⎢<br />

⎣<br />

1<br />

6√<br />

6<br />

1<br />

3√<br />

6<br />

1<br />

6√<br />

6<br />

0<br />

⎡ √ √ √<br />

6<br />

1<br />

2<br />

6<br />

1<br />

⎤<br />

√ √ 6 √ 6<br />

√ 3<br />

· ⎢ 0 2 2 3<br />

5<br />

18<br />

2 3<br />

√ ⎥<br />

⎣<br />

1<br />

0 0 9√<br />

3 37 ⎦<br />

0 0 0<br />

⎤<br />

⎡<br />

⎥<br />

⎦ , ⎢<br />

√<br />

1<br />

⎤ ⎡<br />

6√<br />

2 3<br />

− 2 √<br />

9√<br />

2 3<br />

√ ⎥<br />

⎣ 5<br />

18√<br />

√ 2<br />

√ 3 ⎦ , ⎢<br />

⎣<br />

2 3<br />

1<br />

9<br />

⎡<br />

[<br />

x y<br />

]<br />

z ⎣<br />

5<br />

√<br />

111√<br />

3<br />

√ 37<br />

1<br />

333√<br />

3 37<br />

− 17<br />

22<br />

333<br />

√<br />

333√<br />

√ 3<br />

√ 37<br />

3 37<br />

a 1 a 4 /2<br />

⎤<br />

a 5 /2<br />

a 4 /2 a 2 a 6 /2 ⎦<br />

⎡<br />

⎣<br />

x<br />

y<br />

z<br />

⎤<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

7.4.26 The quadratic form may be written as<br />

⃗x T A⃗x<br />

where A = A T . By the theorem about diagonaliz<strong>in</strong>g a symmetric matrix, there exists an orthogonal matrix<br />

U such that<br />

U T AU = D, A = UDU T<br />

Then the quadratic form is<br />

⃗x T UDU T ⃗x = ( U T ⃗x ) T (<br />

D U T ⃗x )<br />

where D is a diagonal matrix hav<strong>in</strong>g the real eigenvalues of A down the ma<strong>in</strong> diagonal. Now simply let<br />

⃗x ′ = U T ⃗x<br />

9.1.20 The axioms of a vector space all hold because they hold for a vector space. The only th<strong>in</strong>g left to<br />

verify is the assertions about the th<strong>in</strong>gs which are supposed to exist. 0 would be the zero function which<br />

sends everyth<strong>in</strong>g to 0. This is an additive identity. Now if f is a function, − f (x) ≡ (− f (x)). Then<br />

( f +(− f ))(x) ≡ f (x)+(− f )(x) ≡ f (x)+(− f (x)) = 0<br />

Hence f + − f = 0. For each x ∈ [a,b], let f x (x) =1and f x (y) =0ify ≠ x. Then these vectors are<br />

obviously l<strong>in</strong>early <strong>in</strong>dependent.<br />

9.1.21 Let f (i) be the i th component of a vector⃗x ∈ R n . Thus a typical element <strong>in</strong> R n is ( f (1),···, f (n)).<br />

9.1.22 This is just a subspace of the vector space of functions because it is closed with respect to vector<br />

addition and scalar multiplication. Hence this is a vector space.<br />

9.2.1 ∑ k i=1 0⃗x k =⃗0<br />

9.3.29 Yes. If not, there would exist a vector not <strong>in</strong> the span. But then you could add <strong>in</strong> this vector and<br />

obta<strong>in</strong> a l<strong>in</strong>early <strong>in</strong>dependent set of vectors with more vectors than a basis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!