30.01.2013 Views

Aerodynamics and Design for Ultra-Low Reynolds Number Flight

Aerodynamics and Design for Ultra-Low Reynolds Number Flight

Aerodynamics and Design for Ultra-Low Reynolds Number Flight

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.13 Lift curves <strong>for</strong> 2% <strong>and</strong> 4% cambered NACA 4-digit airfoils at Re=12000........... 38<br />

3.14 Drag polars <strong>for</strong> NACA 4-digit airfoils with varying amounts of camber.<br />

xx<br />

The maximum camber location is fixed at 70% chord........................................... 40<br />

3.15 Drag polars <strong>for</strong> NACA 4-digit airfoils with variations in the maximum camber<br />

location <strong>and</strong> a fixed 4% camber. ............................................................................ 40<br />

3.16 Leading <strong>and</strong> trailing edge shapes used in the generation of constant<br />

thickness airfoils..................................................................................................... 41<br />

3.17 Drag polars comparing the radiused <strong>and</strong> blunt constant thickness airfoils<br />

with the NACA 0002.............................................................................................. 43<br />

3.18 Optimized airfoils <strong>for</strong> Re=6000 <strong>and</strong> Re=2000....................................................... 45<br />

3.19 Camber distributions <strong>for</strong> the Re=6000 <strong>and</strong> Re=2000 optimized airfoils. .............. 46<br />

3.20 L/D <strong>for</strong> the optimized Re=6000 airfoil <strong>and</strong> two NACA 4-digit airfoils. ............... 46<br />

3.21 C p distributions <strong>for</strong> the Re=6000 optimized airfoil................................................ 47<br />

4.1 Typical section diagram <strong>for</strong> the rotor equations. All variables are positive as<br />

depicted. ................................................................................................................. 51<br />

4.2 Effect of downstream distance on wake velocity profiles. INS2d<br />

calculation of a 2% thick NACA 4402 camberline, Re=1000, α=4.0 degrees. ..... 59<br />

4.3 Effect of <strong>Reynolds</strong> <strong>Number</strong> on wake velocity profiles one chordlength<br />

aft of trailing edge. INS2d calculation of a 2% thick NACA 4402 camberline,<br />

α=4.0 degrees......................................................................................................... 60<br />

4.4 Average wake deficit model <strong>and</strong> INS2d data points at three <strong>Reynolds</strong> numbers. . 61<br />

4.5 Initial streamlines <strong>for</strong> the contracted wake model of a c<strong>and</strong>idate rotor. ................ 68<br />

4.6 Converged wake streamlines <strong>for</strong> a c<strong>and</strong>idate rotor after 6 iterations..................... 69<br />

4.7 Flowchart of the rotor analysis <strong>and</strong> design process................................................ 73<br />

5.1 Summary of rotor SDM process (from Ref. 32) .................................................... 77<br />

5.2 Specified airfoil <strong>and</strong> blade section photomicrograph............................................. 77<br />

5.3 Photomicrograph of an SDM wing cross-section, based on the NACA 4402<br />

camberline. ............................................................................................................. 78<br />

5.4 Two-piece aluminum press molds <strong>for</strong> the five-inch radius, two-blade rotor. ........ 79<br />

5.5 Small test fixture in thrust testing configuration.................................................... 81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!