30.01.2013 Views

Aerodynamics and Design for Ultra-Low Reynolds Number Flight

Aerodynamics and Design for Ultra-Low Reynolds Number Flight

Aerodynamics and Design for Ultra-Low Reynolds Number Flight

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6.38 Predicted spanwise thrust distributions <strong>for</strong> the four-blade 2.5cm rotor using<br />

two different wake models. .................................................................................. 136<br />

6.39 Predicted spanwise torque distributions <strong>for</strong> the four-blade 2.5cm rotor using two<br />

different wake models. ......................................................................................... 137<br />

6.40 Local relative flow velocities using two different wake models.......................... 138<br />

6.41 Predicted inflow angles using two different wake models................................... 138<br />

6.42 Blade plan<strong>for</strong>ms obtained by applying the rapid design tool with<br />

three different viscous swirl models in conjunction with the classical<br />

Pr<strong>and</strong>tl tip loss correction..................................................................................... 140<br />

6.43 Blade incidence distributions obtained by applying the rapid design tool<br />

with three different viscous swirl models in conjunction with the classical<br />

Pr<strong>and</strong>tl tip loss correction..................................................................................... 141<br />

6.44 Predicted thrust <strong>for</strong> three different 2.5cm diameter rotor designs utilizing<br />

various viscous swirl models................................................................................ 143<br />

6.45 Predicted power required <strong>for</strong> three different 2.5cm diameter rotor designs<br />

utilizing various viscous swirl models. ................................................................ 143<br />

6.46 Blade plan<strong>for</strong>ms obtained by applying the rapid design tool with two different<br />

wake models in conjunction with the angular momentum swirl correction. ....... 145<br />

6.47 Blade incidence distributions obtained by applying the rapid design tool<br />

with two different wake models in conjunction with the angular momentum<br />

swirl correction..................................................................................................... 146<br />

6.48 Lift coefficient distributions predicted by the rapid analysis tool <strong>for</strong> three<br />

different rotor designs emphasizing the effect different wake models. ............... 147<br />

6.49 Chordline pressure distribution at r/R=0.48, 50k RPM. ...................................... 148<br />

6.50 Distribution of the chord-wise component of skin friction<br />

at r/R=0.48, 50k RPM. ......................................................................................... 149<br />

7.1 The 15g prototype electric rotorcraft. .................................................................. 152<br />

7.2 The 65g prototype electric rotorcraft, remote control version. ............................ 155<br />

7.3 The 65g prototype electric rotorcraft, microprocessor version. ........................... 155<br />

7.4 The 150g prototype electric rotorcraft. ................................................................ 157<br />

xxiii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!