27.01.2013 Aufrufe

[Geben Sie hier die Überschrift ein] - MPC

[Geben Sie hier die Überschrift ein] - MPC

[Geben Sie hier die Überschrift ein] - MPC

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

<strong>MPC</strong>-WORKSHOP JULI 2012<br />

Table 1: Characteristic data of the band gap circuit.<br />

Output voltage 1.2 ± 0.02 V<br />

Load Current ≤ 75 µA<br />

PSRR @ 10KHz -26 dB<br />

Current Consumption @1.9V 4 µA<br />

Figure 9: Low drop out rectifier (LDO).<br />

So, the current of X is N times more than the current<br />

of the N BJT’s connected in parallel which are identical<br />

to X. The value of R2 depends upon the value of R1<br />

chosen.<br />

Now in order to keep the current consumption small,<br />

the value of R1 is set to 60 kΩ and the value of R2 is<br />

600 kΩ in order to get a factor of 10.<br />

For a successful bandgap design there must be a<br />

compromise made between the current and the number<br />

of passive elements. Also the PSRR is important for a<br />

bandgap, because in an RFID application there are big<br />

changes in the available supply voltage. Further the<br />

PSRR must suppress the RF variations, because there<br />

is no space for filtering the input. The bandgap concept<br />

of figure 8 is preferred due to its high PSRR<br />

value in comparison to the other circuits, see [7].<br />

Some characteristic data of the bandgap circuit is<br />

listed in table 1. Current consumption is only 4 µA at<br />

1.9 V supply. The circuit can deliver a load of maximal<br />

75 µA to the demodulation circuit. The output<br />

voltage is stable over temperature range of -40 °C to<br />

125 °C with a minimum VDD supply of 1.9 V to a<br />

maximum VDD of 3.6 V.<br />

C. Low Drop Out Regulator<br />

The low drop out regulator (LDO) provides a stable<br />

voltage supply for the external circuitry connected to<br />

the frontend. Figure 9 shows the standard configuration<br />

used for the LDO with external components separated<br />

by the dotted line. The voltage Vin is taken from<br />

the output of the power rectifier, and the reference<br />

voltage is taken from the bandgap reference. The LDO<br />

used is made with a PMOS pass transistor with a minimum<br />

dropout voltage of 150 mV. The output voltage<br />

is controlled by the resistor divider R1 and R2,<br />

Table 2: Low drop out circuit.<br />

Figure 10: Load modulation circuit.<br />

which are discrete devices to stay flexible for different<br />

applications. The external Schottky-diode is only used<br />

with semi-passive supply, where an external voltage is<br />

available.<br />

The output voltage of the LDO can be adjusted between<br />

1.2 V to 2.2 V by selecting the values of the<br />

resistors R1 and R2.<br />

Usually, the values of R1 and R2 are in mega ohms,<br />

so that the quiescent current of the LDO is kept as<br />

small as possible.<br />

The PSRR of the error amplifier must be better than<br />

32 dB in order to suppress any noise in the supply<br />

voltage [8]. The output voltage Vout is given by the<br />

equation<br />

(4)<br />

2<br />

Vout = Vref<br />

⋅ ( 1+<br />

)<br />

R1<br />

The external capacitor Cout is needed to bridge and<br />

filter the output. The external Schottky diode prevents<br />

any reverse current flow in case Vout is greater than Vin.<br />

This may happen when a battery or a double layer<br />

capacitor (“gold cap”) is used at the output for intermediate<br />

storage. Some characteristics data of the LDO<br />

are listed in table 2.<br />

V. COMMUNICATION<br />

The communication circuits are modulator, field detector<br />

circuit and demodulator.<br />

A. Modulator<br />

Output Voltage Range 1.2 to 2.2 V<br />

Quiescent Current 1 µA<br />

Max Load Current 4 mA<br />

Drop Out Voltage 150 mV<br />

PSRR @ 4mA Load and<br />

10KHz<br />

-32 dB<br />

R<br />

The modulator circuit used is a load modulation (onoff<br />

amplitude shift keying) circuit for sending information<br />

back to the reader as shown in figure 10. The<br />

29

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!