28.02.2013 Views

The Principles of Clinical Cytogenetics - Extra Materials - Springer

The Principles of Clinical Cytogenetics - Extra Materials - Springer

The Principles of Clinical Cytogenetics - Extra Materials - Springer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Genomic Imprinting and Uniparental Disomy 531<br />

• Confined placental mosaicism (CPM) (see Chapter 12) with a trisomic cell line for chromosomes<br />

6, 7, 11, 14, or 15 (and possibly also 16) found in chorionic villus sampling but only normal cells<br />

in amniotic fluid<br />

• <strong>The</strong> presence <strong>of</strong> a supernumerary marker chromosome originating from one <strong>of</strong> these chromosomes<br />

• De novo or familial Robertsonian translocations (see Chapters 3 and 9) involving chromosomes<br />

14 or 15, especially when homologous<br />

• Abnormal prenatal ultrasound findings <strong>of</strong> features seen in known UPD syndromes<br />

ACKNOWLEDGMENTS<br />

I am grateful to Dr. David Wang for preparation <strong>of</strong> the diagrams. I also thank Jo Ann Rieger for<br />

her assistance with preparation <strong>of</strong> the manuscript.<br />

REFERENCES<br />

1. Crouse, H.V. (1960) <strong>The</strong> controlling element in sex chromosome behaviour in Sciara. Genetics 45, 1429–1443.<br />

2. Hall, J.G. (1990) Genomic imprinting: review and relevance to human diseases. Am. J. Hum. Genet. 46, 857–873.<br />

3. Hoppe, P.C. and Illmensee, K. (1977) Microsurgically produced homozygous-diploid uniparental mice. Proc. Natl.<br />

Acad. Sci. USA 74, 5657–5661.<br />

4. McGrath, J. and Solter, D. (1984) Completion <strong>of</strong> mouse embryogenesis requires both the maternal and paternal genomes.<br />

Cell 37, 179–183.<br />

5. Surani, M.A.H., Barton, S.C., and Norris, M.L. (1984) Development <strong>of</strong> reconstituted mouse eggs suggests imprinting<br />

<strong>of</strong> the genome during gametogenesis. Nature 308, 548–550.<br />

6. Barton, S.C., Surani, M.A.H., and Norris, M.L. (1984) Role <strong>of</strong> paternal and maternal genomes in mouse development.<br />

Nature 311, 374–376.<br />

7. Surani, M.A.H., Barton, S.C., and Norris, M.L. (1986) Nuclear transplantation in the mouse: heritable differences<br />

between parental genomes after activation <strong>of</strong> the embryonic genome. Cell 45, 127–136.<br />

8. Linder, D., McCaw, B.K., and Hecht, F. (1975) Parthenogenic origin <strong>of</strong> benign ovarian teratomas. N. Engl. J. Med. 292, 63–66.<br />

9. Kajii, T. and Ohama, K. (1977) Androgenetic origin <strong>of</strong> hydatidiform mole. Nature 268, 633–634.<br />

10. Lawler, S.D., Povey, S., Fisher, R.A., and Pickthal, V.J. (1982) Genetic studies on hydatidiform moles. II. <strong>The</strong> origin <strong>of</strong><br />

complete moles. Ann. Hum. Genet. 46, 209–222.<br />

11. McFadden, D.E. and Kalousek, D.K. (1991) Two different phenotypes <strong>of</strong> fetuses with chromosomal triploidy: correlation<br />

with parental origin <strong>of</strong> the extra haploid set. Am. J. Med. Genet. 38, 535–538.<br />

12. Jacobs, P.A., Szulman, A.E., Funkhouser, J., Matsuura, J.S., and Wilson, C.C. (1982) Human triploidy: relationship<br />

between parental origin <strong>of</strong> the additional haploid complement and development <strong>of</strong> partial hydatidiform mole. Ann.<br />

Hum. Genet. 46, 223–231.<br />

13. McFadden, D.E., Kwong, L.C., Yam, I.Y., and Langlois, S. (1993) Parental origin <strong>of</strong> triploidy in human fetuses: evidence<br />

for genomic imprinting. Hum. Genet. 92, 465–469.<br />

14. Cattanach, B.M. (1986) Parental origin effects in mice. J. Embryol. Exp. Morphol. 97(Suppl.), 137–150.<br />

15. Lyon, M.F. (1988) <strong>The</strong> William Allan Memorial award address: X-chromosome inactivation and the location and<br />

expression <strong>of</strong> X-linked genes. Am. J. Hum. Genet. 42, 8–16.<br />

16. Sharman, G.B. (1971) Late DNA replication in the paternally derived X chromosome <strong>of</strong> female kangaroos. Nature 230,<br />

231–232.<br />

17. Takagi, N. and Sasaki, M. (1975) Preferential inactivation <strong>of</strong> the paternally derived X chromosome in the extraembryonic<br />

membranes <strong>of</strong> the mouse. Nature 256, 640–642.<br />

18. West, J.D., Freis, W.I., Chapman, V.M., and Papaioannou, V.E. (1977) Preferential expression <strong>of</strong> the maternally derived<br />

X chromosome in the mouse yolk sac. Cell 12, 873–882.<br />

19. Harper, M.I., Fosten, M., and Monk, M. (1982) Preferential paternal X inactivation in extra-embryonic tissues <strong>of</strong> early<br />

mouse embryos. J. Embryol. Exp. Morphol. 67, 127–138.<br />

20. Harrison, K.B. (1989) X-chromosome inactivation in the human cytotrophoblast. Cytogenet. Cell Genet. 52, 37–41.<br />

21. Goto, T., Wright, E., and Monk, M. (1997) Paternal X-chromosome inactivation in human trophoblastic cells. Mol.<br />

Hum. Reprod. 3, 77–80.<br />

22. Migeon, B.R., Wolf, S.F., Axelman, J., Kaslow, D.C., and Schmidt, M. (1985) Incomplete X chromosome dosage<br />

compensation in chorionic villi <strong>of</strong> human placenta. Proc. Natl. Acad. Sci. USA 82, 3390–3394.<br />

23. Mohandas, T.K., Passage, M.B., Williams, J.W.R., Sparks, R.S., Yen, P.H., and Shapiro, L.J. (1989) X-chromosome<br />

inactivation in cultured cells from human chorionic villi. Somat. Cell Mol. Genet. 15, 131–136.<br />

24. Looijenga, L.H.J., Gillis, A.J.M., Verkerk, A.J.M.H., van Lutten, W.L.J., and Ooserhuis, J.W. (1999) Heterogeneous X<br />

inactivation in trophoblastic cells <strong>of</strong> human full-term female placentas. Am. J. Hum. Genet 64, 1445–1452.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!