28.02.2013 Views

The Principles of Clinical Cytogenetics - Extra Materials - Springer

The Principles of Clinical Cytogenetics - Extra Materials - Springer

The Principles of Clinical Cytogenetics - Extra Materials - Springer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

534 Jin-Chen Wang<br />

84. Bürger, J., Buiting, K., Dittrich, B., et al. (1997) Different mechanisms and recurrence risks <strong>of</strong> imprinting defects in<br />

Angelman syndrome. Am. J. Hum. Genet. 61, 88–93.<br />

85. Kishino, T., Lalande, M., and Wagstaff, J. (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet.<br />

15, 70–73.<br />

86. Holm, V.A., Cassidy, S.B., Butler, M.G., et al. (1993) Prader–Willi syndrome: consensus diagnostic criteria. Pediatrics<br />

91, 398–402.<br />

87. Pfeifer, K. (2000) Mechanisms <strong>of</strong> genomic impinting. Am. J. Hum. Genet. 67, 777–787.<br />

88. Lee, S., Kozlov, S., Hernandez, L., et al. (2000) Expression and imprinting <strong>of</strong> MAGEL2 suggest a role in Prader–Willi<br />

syndrome and the homologous murine imprinting phenotype. Hum. Mol. Genet. 9, 1813–1819.<br />

89. de los Santos, T., Schweizer, J., Rees, C.A., and Francke, U. (2000) Small evolutionarily conserved RNA, resembling<br />

C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader–Willi deletion region,<br />

which is highly expressed in brain. Am. J. Hum. Genet. 67, 1067–1082.<br />

90. Lee, S. and Wevrick, R. (2000) Identification <strong>of</strong> novel imprinted transcripts in the Prader–Willi syndrome and Angelman<br />

syndrome deletion region: further evidence for regional imprinting control. Am. J. Hum. Genet. 66, 848–858.<br />

91. Angelman, H. (1965) “Puppet” children: a report on three cases. Dev. Med. Child. Neurol. 7, 681–688.<br />

92. Jiang, Y., Lev-Lehman, E., Bressler, J., Tsai, T.-F., and Beaudet, A.L. (1999) Genetics <strong>of</strong> Angelman syndrome. Am. J.<br />

Hum. Genet. 65, 1–6<br />

93. Nakao, M., Sutcliffe, J.S., Durtschi, B., Mutirangura, A., Ledbetter, D.H., and Beaudet, A.L. (1994) Imprinting analysis<br />

<strong>of</strong> three genes in the Prader–Willi/Angelman region: SNRPN, E6–associated protein, and PAR-2 (D15S225E).<br />

Hum. Mol. Genet. 3, 309–315.<br />

94. Vu, T.H. and H<strong>of</strong>fman, A.R. (1997) Impringint <strong>of</strong> the Angelman syndrome gene, UBE3A, is restricted to brain. Nature<br />

Genet. 17, 12–13.<br />

95. Rougeulle, C., Glatt, H., and Lalande, M. (1997) <strong>The</strong> Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted<br />

in brain. Nature Genet. 17, 14–15.<br />

96. Meguro, M., Kashiwagi, A., Mitsuya, K., et al. (2001) A novel maternally expressed gene, ATP10C, encodes a putative<br />

aminophospholipid translocase associated with Angelman syndrome. Nature Genet. 28, 19–20.<br />

97. Buiting, K., Saitoh, S., Gross, S., et al. (1995) Inherited microdeletions in the Angelman and Prader–Willi syndromes<br />

define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400.<br />

98. Ohta, T., Buiting, K., Kokkonen, H., et al. (1999) Molecular mechanism <strong>of</strong> Angelman syndrome in two large families<br />

involves an imprinting mutation. Am. J. Hum. Genet. 64, 385–396.<br />

99. Buiting, K., Lich, C., Cottrell, S., Barnicoat, A., and Horsthemke, B. (1999) A 5-kb imprinting center deletion in a<br />

family with Angelman syndrome reduces the shortest region <strong>of</strong> deletion overlap to 880 bp. Hum. Genet. 105, 665–666.<br />

100. Buiting, K., Barnicoat, A., Lich, C., Pembrey, M., Malcolm, S., and Horsthemke, B. (2001) Disruption <strong>of</strong> the bipartite<br />

imprinting center in a family with Angelman syndrome. Am. J. Hum. Genet. 68, 1290–1294.<br />

101. Beckwith, J.B. (1969) Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly.<br />

Birth Defects 5, 188.<br />

102. Pettenati, M.J., Haines, J.L., Higgins, R.R., Wappner, R.S., Palmer, C.G., and Weaver, D.D. (1986) Wiedemann–<br />

Beckwith syndrome: presentation <strong>of</strong> clinical and cytogenetic data on 22 new cases and review <strong>of</strong> the literature. Hum.<br />

Genet. 74, 143–154.<br />

103. Henry, I., Bonaiti-Pellie, C., Chehensse, V., et al. (1991) Uniparental paternal disomy in a genetic cancer-predisposing<br />

syndrome. Nature 351, 665–667.<br />

104. Catchpoole, D., Lam, W.W.K., Valler, D., et al. (1997) Epigenetic modification and uniparental inheritance <strong>of</strong> H19 in<br />

Beckwith–Wiedemann syndrome. J. Med. Genet. 34, 353–359.<br />

105. Brown, K.W., Gardner, A., Williams, J.C., Mott, M.G., McDermott, A., and Maitland, N.J. (1992) Paternal origin <strong>of</strong><br />

11p15 duplications in the Beckwith–Wiedemann syndrome. A new case and review <strong>of</strong> the literature. Cancer Genet.<br />

Cytogenet. 58, 66–70.<br />

106. Weksberg, R., Teshima, I., Williams, B.R., et al. (1993) Molecular characterization <strong>of</strong> cytogenetic alterations associated<br />

with the Beckwith–Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for<br />

BWS is imprinted. Hum. Mol. Genet. 2, 549–556.<br />

107. Tommerup, N., Brandt, C.A., Pedersen, S., Bolund, L., and Kamper, J. (1993) Sex dependent transmission <strong>of</strong> Beckwith–<br />

Wiedemann syndrome associated with a reciprocal translocation t(9;11)(p11.2;p15.5). J. Med. Genet. 30, 958–961.<br />

108. Weksberg, R., Nishikawa, J., Caluseriu, O., et al. (2001) Tumor development in the Beckwith–Wiedemann syndrome is<br />

associated with a variety <strong>of</strong> constitutional molecular 11p15 alterations including imprinting defects <strong>of</strong> KCNQ1OT1.<br />

Hum. Mol. Genet. 10, 2989–3000.<br />

109. Moutou, C., Junien, C., Henry, I., and Bonaiti-Pellie, C. (1992) Beckwith–Wiedemann syndrome: a demonstration <strong>of</strong><br />

the mechanisms responsible for the excess <strong>of</strong> transmitting females. J. Med. Genet. 29, 217–220.<br />

110. Viljoen, D. and Ramesar, R. (1992) Evidence for paternal imprinting in familial Beckwith–Wiedemann syndrome.<br />

J. Med. Genet. 29, 221–225.<br />

111. Hatada, I., Hir<strong>of</strong>umi, O., Fukushima, Y., et al. (1996) An imprinted gene p57 KIP2 is mutated in Beckwith–Wiedemann<br />

syndrome. Nature Genet. 14, 171–173.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!