28.02.2013 Views

The Principles of Clinical Cytogenetics - Extra Materials - Springer

The Principles of Clinical Cytogenetics - Extra Materials - Springer

The Principles of Clinical Cytogenetics - Extra Materials - Springer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Genomic Imprinting and Uniparental Disomy 535<br />

112. Lam, W.W.K., Hatada, I., Ohishi, S., et al. (1999) Analysis <strong>of</strong> germline CDKN1C (p57 KIP2 ) mutations in familial and<br />

sporadic Beckwith–Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J. Med. Genet. 36,<br />

518–523.<br />

113. Ping, A.J., Reeve, A.E., Law, D.J., Young, M.R., Boehnke, M., and Feinberg, A.P. (1989) Genetic linkage <strong>of</strong> Beckwith–<br />

Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 44, 720–723.<br />

114. Koufos, A., Grundy, P., Morgan, K., Aet al. (1989) Familial Wiedemann–Beckwith syndrome and a second Wilms<br />

tumor locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719.<br />

115. Lee, M.P., DeBaun, M.R., Mitsuya, K., et al. (1999) Loss <strong>of</strong> imprinting <strong>of</strong> a paternally expressed transcript, with<br />

antisense orientation to KVLQT1, occurs frequently in Beckwith–Wiedemann syndrome and is independent <strong>of</strong> insulinlike<br />

growth factor II impringting. Proc. Natl. Acad. Sci. USA 96, 5203–5208.<br />

116. Lee, M., Brandenburg, S., Landes, G., Adams, M., Miller, G., and Feinberg, A. (1999) Two novel genes in the center <strong>of</strong><br />

the 11p15 imprinted domain escape genomic imprinting. Hum. Mol. Genet. 8, 683–690.<br />

117. Matsuoka, S., Thompson, J.S., Edwards, M.C., et al. (1996) Imprinting <strong>of</strong> the gene encoding a human cyclin-dependent<br />

kinase inhibitor, p57 KIP2 , on chromosome 11p15. Proc. Natl. Acad. Sci. USA 93, 3026–3030.<br />

118. Hatada, I., Inazawa, J., Abe, T., et al. (1996) Genomic imprinting <strong>of</strong> human p57 KIP2 and its reduced expression in<br />

Wilms’ tumors. Hum. Mol. Genet. 5, 783–788.<br />

119. Mitsuya, K., Meguro, M., Le, M.P., et al. (1999) LIT1, an imprinted antisense RNA in the human KvLQT1 locus<br />

identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8,<br />

1209–1217.<br />

120. Reik, W., Brown, K.W., Schneid, H., Le Bouc, Y., Bickmore, W., and Maher, E.R. (1995) Imprinting mutations in the<br />

Beckwith–Wiedemann syndrome suggested by altered imprinting pattern in the IGF2–H19 domain. Hum. Mol. Genet.<br />

4, 2379–2385.<br />

121. Gaston, V., Le Bouc, Y., Soupre, V., et al. (2001) Analysis <strong>of</strong> the methylation status <strong>of</strong> the KCNQ1OT and H19<br />

genes in leukocyte DNA for the diagnosis and prognosis <strong>of</strong> Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 9,<br />

409–418.<br />

122. Heutink, P., van der Mey, A.G.L., Sandkuijl, L.A., et al. (1992) A gene subject to genomic imprinting and responsible<br />

for hereditary paragangliomas maps to chromosome 11q23-qter. Hum. Mol. Genet. 1, 7–10.<br />

123. Mariman, E.C.M., van Beersum S.E.C., Cremers, C.W.R.J., van Baars, F.M., and Ropers, H.H. (1993) Analysis <strong>of</strong> a<br />

second family with hereditary non-chromaffin paragangliomas locates the underlying gene at the proximal region <strong>of</strong><br />

chromosome 11q. Hum. Genet. 91, 357–361.<br />

124. Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., et al. (2000) Mutations in SDHD, a mitochondrial<br />

complex II gene, in hereditary paraganglioma. Science 287, 848–851.<br />

125. Milunsky, J.M., Maher, T.A., Michels, V.V., and Milunsky, A. (2001) Novel mutations and the emergence <strong>of</strong> a common<br />

mutation in the SDHD gene causing familial paraganglioma. Am. J. Med. Genet. 100, 311–314.<br />

126. Gimenez-Roqueplo, A.-P., Favier, J., Rustin, P., et al. (2001) <strong>The</strong> R22X mutation <strong>of</strong> the SDHD gene in hereditary<br />

paraganglioma abolishes the enzymatic activity <strong>of</strong> complex II in the mitochonbdrial respiratory chain and activates the<br />

hypoxia pathway. Am. J. Hum. Genet. 69, 1186–1197.<br />

127. van der Mey, A.G., Maaswinkel-Mooy, P.D., Cornelisse, C.J., Schmidt, P.H., and van de Kamp, J.J. (1989) Genomic<br />

imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 2, 1291–1294.<br />

128. van Gils, A.P., van der Mey, A.G., Hoogma, R.P., et al. (1992) MRI screening <strong>of</strong> kindred at risk <strong>of</strong> developing paragangliomas:<br />

support for genomic imprinting in hereditary glomus tumours. Br. J. Cancer 65, 903–907.<br />

129. Schroeder, W.T., Chao, L-Y., Dao, D.D., et al. (1987) Nonrandom loss <strong>of</strong> maternal chromosome 11 alleles in Wilms<br />

tumors. Am. J. Hum. Genet. 40, 413–420.<br />

130. Mannens, M., Slater, R.M., Heyting, C., et al. (1988) Molecular nature <strong>of</strong> genetic changes resulting in loss <strong>of</strong> heterozygosity<br />

<strong>of</strong> chromosome 11 in Wilms’ tumors. Hum. Genet. 81, 41–48.<br />

131. Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., and Sapienza, C. (1989) A model for embryonal<br />

rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl. Acad. Sci. USA 86, 7480–7484.<br />

132. Koi, M., Johnson, L.A., Kalikin, L.M., Little, P.F., Nakamura, Y., and Feinberg, A.P. (1993) Tumor cell growth arrest<br />

caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260, 361–364.<br />

133. Ogawa, O., Eccles, M.R., Szeto, J., et al. (1993) Relaxation <strong>of</strong> insulin-like growth factor II gene imprinting implicated<br />

in Wilms’ tumour. Nature 362, 749–751.<br />

134. Wu, H.K., Squire, J.A., Catzavelos, C.G., and Weksberg, R. (1997) Relaxation <strong>of</strong> imprinting <strong>of</strong> human insulin-like<br />

growth factor II gene, IGF2, in sporadic breast carcinomas. Biochem. Biophys. Res. Commun. 235, 123–129.<br />

135. Wang, W.H., Duan, J.X., Vu, T.H., and H<strong>of</strong>fman, A.R. (1996) Increased expression <strong>of</strong> the insulin-like growth factor-II<br />

gene in Wilms’ tumor is not dependent on loss <strong>of</strong> genomic imprinting or loss <strong>of</strong> heterozygosity. J. Biol. Chem. 271,<br />

27,863–27,870.<br />

136. Friend, S.H., Bernards, R., Rogelj, S., et al. (1986) A human DNA segment with properties <strong>of</strong> the gene that predisposes<br />

to retinoblastoma and osteosarcoma. Nature 323, 643–646.<br />

137. Ejima, Y., Sasaki, M.S., Kaneko, A., and Tanooka, H. (1988) Types, rates, origin and expressivity <strong>of</strong> chromosome<br />

mutations involving 13q14 in retinoblastoma patients. Hum. Genet. 79, 118–123.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!